Finite element analysis in the modeling of the heart and aorta structures

Cover Page


Cite item

Full Text

Abstract

Rationale: 3D modeling of various anatomical structures has recently become a separate area of topographical, anatomical, and biomechanical studies. Current in vivo visualization methods and quantitative analysis in silico allow to perform the precise modeling of these processes aimed at investigation into the pathophysiology of cardiovascular disorders, risk prediction, planning of surgical interventions and virtual refinement of their separate stages.

Aim: To develop tools for elaboration, analysis and validation of personalized models of various structures of the heart and aortal arch taking into account their morphological characteristics.

Materials and methods: We used the results of 14 computed tomography studies from randomized patients without any disease or anomaly of the heart, aortic valve and aortal bulb. The analysis and subsequent transformation of the images were done with Vidar DICOM Viewer, SolidWorks 2016, VMTKLab software. For the FSI modeling of the aortic arch based on the results of functional multiaxial computed (MAC) coronarography (a female patient of 55 years) we developed a personalized model of the ascending aorta and aortic arch at the beginning of the systole. Using HyperMesh software (Altair Engineering Inc., USA) we have built a network of finite element of the luminal area, adventitia, and aortic media. To model mechanical properties of the aortic structures we used an anisotropic hyperelastic material model by Holzapfel – Gasser – Ogden. Material modeling, choice of the limiting antecedents, and analysis of fluid-structure interaction were performed with Abaqus CAE 6.14 software (Simulia, Johnston, USA). Adaptive image meshing by Young was used to elaborate the finite element template of the left ventricle. The algorithm was realized within the IDE PyCharm software media in Python 3.7. The algorithm was realized based on the open-source libraries OpenCV, NumPy, Matplotlib, and SciPy.

Results: The first stage of the development of the aortic valve model included the design of its virtual 3D template. Thereafter, a cohesive geometric model was elaborated. Subsequent stage of the work included the transformation of the aortic valve geometric model into the parametric one. This was done through the use of the “Equations” tool within the SolidWorks. No problems with geometry of the model during its deformation were identified. Aortic segment modeling was based on the data obtained by functional MAC coronarography. Based on this and on Inobitec Dicom Viewer software, we generated a multiplane reconstruction of the zone of interest including anatomical structure of the heart and aortic valve. With the resulting set of contours, we created a 3D model, which then was converted into a polygonal stereolithographic model. We developed an algorithm for adaptive meshing to elaborate a polygonal template capable of deformation that can be used for registration both with the net methods (B-Spline) and based on the image characteristics (homologous pixels).

Conclusion: The resulting parametric 3D model of the aortic valve anatomical structures is capable of adequate transformation of its geometry under external factors. It can be used in simulators of endovascular cardiosurgical procedures.

About the authors

A. A. Smirnov

Moscow Region State University

Author for correspondence.
Email: savmeda@yandex.ru
ORCID iD: 0000-0002-2661-3759

Alexander A. Smirnov – MD, PhD, Associate Professor, Acting Manager of Chair of Fundamental Medical Sciences

 8–1–366 Lyzhnyy per., Saint Petersburg, 197082, 

117 3-go Internatsionala ul., Noginsk, Moscow Region, 142400

Russian Federation

A. L. Ovsepyan

Saint Petersburg Electrotechnical University

Email: fake@neicon.ru
ORCID iD: 0000-0002-4050-214X

Artur L. Ovsepyan – Graduate Student, Chair of Bioengineering Systems

5 Professora Popova ul., Saint Petersburg, 197376

Russian Federation

P. A. Kvindt

Saint Petersburg Electrotechnical University

Email: fake@neicon.ru
ORCID iD: 0000-0001-8867-6440

Pavel A. Kvindt – Graduate Student, Chair of Bioengineering Systems

5 Professora Popova ul., Saint Petersburg, 197376

Russian Federation

F. N. Paleev

Moscow Regional Research and Clinical Institute (MONIKI);
National Medical Research Cardiology Center

Email: fake@neicon.ru
ORCID iD: 0000-0001-9481-9639

Filipp N. Paleev – MD, PhD, Professor, Correspondent Member of Russian Academy of Sciences, Head of Chair of Therapy, Postgraduate Training Faculty Moscow Regional Research and Clinical Institute (MONIKI); First Deputy General Director for ScienceNational Medical Research Cardiology Center

61/2 Shchepkina ul., Moscow, 129110, 

15a 3-ya Cherepkovskaya ul., Moscow, 121552

Russian Federation

E. V. Borisova

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Ekaterina V. Borisova – MD, PhD, Senior Research Fellow, Department of Cardiology

 61/2 Shchepkina ul., Moscow, 129110

Russian Federation

E. V. Yakovlev

Moscow Region State University

Email: fake@neicon.ru
ORCID iD: 0000-0002-8435-7562

Evgeny V. Yakovlev – MD, PhD, Associate Professor, Chair of Fundamental Medical Sciences

117 3-go Internatsionala ul., Noginsk, Moscow Region, 142400

Russian Federation

References

  1. Гейдаров НА, Гайнуллова КС, Дрыгина ОС. Компьютерные методы моделирования течения крови в задачах кардиологии и кардиохирургии. Комплексные проблемы сердечно-сосудистых заболеваний. 2018;7(2):129–136. doi: 10.17802/2306-1278-2018-7-2-129-136.
  2. Bahraseman HG, Languri EM, Yahyapourjalaly N, Espino DM. Fluid-structure interaction modeling of aortic valve stenosis at different heart rates. Acta Bioeng Biomech. 2016;18(3):11–20.
  3. Mao W, Caballero A, McKay R, Primiano C, Sun W. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. PLoS One. 2017;12(9):e0184729. doi: 10.1371/journal.pone.0184729.
  4. Gilmanov A, Barker A, Stolarski H, Sotiropoulos F. Image-guided fluid-structure interaction simulation of transvalvular hemodynamics: Quantifying the effects of varying aortic valve leaflet thickness. Fluids. 2019;4(3):119. doi: 10.3390/fluids4030119.
  5. Kunzelman KS, Grande KJ, David TE, Cochran RP, Verrier ED. Aortic root and valve relationships. Impact on surgical repair. J Thorac Cardiovasc Surg. 1994;107(1):162–170.
  6. Шихвердиев НН, Марченко СП. Основы реконструктивной хирургии клапанов сердца. СПб.: Дитон; 2007. 340 с.
  7. Spühler JH, Jansson J, Jansson N, Hoffman J. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model. Front Physiol. 2018;9:363. doi: 10.3389/fphys.2018.00363.
  8. Колсанов АВ, Манукян АА, Зельтер ПМ, Чаплыгин СС, Капишников АВ. Виртуальное моделирование операции на печени на основе данных компьютерной томографии. Анналы хирургической гепатологии. 2016;21(4):16–22. doi: 10.16931/1995-5464.2016416-22.
  9. Колсанов АВ, Мякотных МН, Миронов АА, Канаев ЕИ. 3D-анатомия конфлюэнса воротной вены по данным компьютерной томографии. Оперативная хирургия и клиническая анатомия (Пироговский научный журнал). 2020;4(1):9–18. doi: 10.17116/operhirurg202040119.
  10. Колсанов АВ, Зельтер ПМ, Хобта РВ, Чаплыгин СС, Манукян АА. Первые результаты применения интраоперационной навигации на основе данных КТ и МРТ у пациента с опухолью межжелудочковой перегородки. Российский электронный журнал лучевой диагностики. 2020;10(4): 271–276. doi: 10.21569/2222-7415-2020-10-4-271-276.
  11. Ovsepyan AL, Kvindt PA, Pustozerov EA. Development of the Software Complex for Planning and Simulation of Robot-Assisted Radical Prostatectomy. 2018 Third International Conference on Human Factors in Complex Technical Systems and Environments (ERGO) [Internet]. IEEE. 2018. doi: 10.1109/ERGO.2018.8443860.
  12. Колсанов АВ, Воронин АС. Программа для отработки алгоритма выполнения хирургических операций «Виртуальный хирург». Свид. о регистрации программы для ЭВМ RU 2019619242 от 15.07.2019.
  13. Колсанов АВ, Линева ОИ, Иванова ВД. Разработка и внедрение российских симуляционных и виртуальных технологий в современный образовательный процесс. Акушерство и гинекология. 2016;(7):83–87. doi: 10.18565/aig.2016.7.83-87.
  14. Ovsepian A, Smirnov A, Dydykin S, Vasil'ev Yu, Trunin E, Shatunova O, Aleksandrov A, Ostyakova A, Utkin A. Personalized FSI-modeling of the aortic bulb and arch to predict its mechanical behavior and assess the loads during the cardiac cycle. Archiv Euromedica. 2021;11(2): 13–16. doi: 10.35630/2199-885X/2021/11/2/3.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Smirnov A.A., Ovsepyan A.L., Kvindt P.A., Paleev F.N., Borisova E.V., Yakovlev E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies