OPTIMIZATION OF LASER SURGERY OF THE SECONDARY CATARACT

Cover Page
  • Authors: Baum O.I.1,2, Romanov O.G.3,4, Gamidov A.A.5,6, Fedorov A.A.5,6, Romanov G.S.7,8, Zheltov G.I.9,10, Sobol E.N.1,2
  • Affiliations:
    1. Institute of Laser and Information Technologies of the Russian Academy of Sciences
    2. 2 Pionerskaya ul., Troitsk, Moscow, 142092, Russian Federation
    3. Belarusian State University
    4. 4 Nezavisimosti pr., Minsk, 220030, Republic of Belarus
    5. State Research Institute of Eye Diseases of Russian Academy of Sciences
    6. 11 Rossolimo ul., Moscow, 119021, Russian Federation
    7. A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
    8. 15 P. Brovka ul., Minsk, 220072, Republic of Belarus
    9. B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
    10. 68 Nezavisimosti pr., Minsk, 220072, Republic of Belarus
  • Issue: Vol 44, No 2 (2016)
  • Pages: 130-139
  • Section: ARTICLES
  • URL: https://almclinmed.ru/jour/article/view/329
  • DOI: https://doi.org/10.18786/2072-0505-2016-44-2-130-139


Cite item

Abstract

Background: This is a theoretical and experimental study of the thermomechanical effects of laser radiation with a wavelength of 1.06 microns on the eye tissues during a laser surgery on the secondary cataract (pupillary membrane). Its relevance is related to the rates of complications after laser surgery of the eye associated with the choice of energy and time parameters of the laser irradiation. These parameters are related to the occurrence of such factors as unstable fields of thermal stress and pressure that are difficult to take into account and indirectly lead to adverse events when removing the secondary cataract. Aim: To minimize side effects and to optimize the existing technology of laser removal of the secondary cataract. Materials and methods: Samples of a  normal lens capsule and of lens capsules with various types of opacities taken during a  cataract surgery, with various optic characteristics and thickness, were treated with an infrared laser (Nd:YAG laser, 1064 nm). We performed morphometric measurements and built up a  theoretical model of the processes in a continuous medium under the effects of impulse laser irradiation. Results: The results of numerical modelling with this newly developed theoretical model are in satisfactory agreement with the experimental data on development of deformities obtained with the autopsy materials (posterior capsule of the human lens with various optical characteristics and thickness, from thin transparent membranes to more thick opaque samples). Conclusion: This study would allow for optimization of the technology of laser treatment for secondary cataracts by changing the irradiation parameters during the procedure. 

About the authors

O. I. Baum

Institute of Laser and Information Technologies of the Russian Academy of Sciences; 2 Pionerskaya ul., Troitsk, Moscow, 142092, Russian Federation

Author for correspondence.
Email: baumolga@gmail.com
PhD (in Physics and Mathematics), Senior Research Fellow, Advanced Laser Technologies Department Russian Federation

O. G. Romanov

Belarusian State University; 4 Nezavisimosti pr., Minsk, 220030, Republic of Belarus

Email: baumolga@gmail.com
PhD (in Physics and Mathemat- ics), Associate Professor, Head of Chair of Computer Modelling Belarus

A. A. Gamidov

State Research Institute of Eye Diseases of Russian Academy of Sciences; 11 Rossolimo ul., Moscow, 119021, Russian Federation

Email: baumolga@gmail.com
MD, PhD, Senior Research Fellow, Laboratory of New Laser Technologies Russian Federation

A. A. Fedorov

State Research Institute of Eye Diseases of Russian Academy of Sciences; 11 Rossolimo ul., Moscow, 119021, Russian Federation

Email: baumolga@gmail.com

MD, PhD, Leading Research Fellow

Russian Federation

G. S. Romanov

A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus; 15 P. Brovka ul., Minsk, 220072, Republic of Belarus

Email: baumolga@gmail.com
PhD (in Physics and Mathematics), Senior Research Fellow Belarus

G. I. Zheltov

B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus; 68 Nezavisimosti pr., Minsk, 220072, Republic of Belarus

Email: baumolga@gmail.com
PhD (in Physics and Mathemat- ics), Professor, Principal Research Fellow Belarus

E. N. Sobol

Institute of Laser and Information Technologies of the Russian Academy of Sciences; 2 Pionerskaya ul., Troitsk, Moscow, 142092, Russian Federation

Email: baumolga@gmail.com
PhD (in Physics and Mathematics), Head of Laboratory of Biophotonics Russian Federation

References

  1. Краснов ММ. Лазерная микрохирургия глаза. Вестник офтальмологии. 1973;(1): 3–11.
  2. Aron-Rosa D, Aron JJ, Griesemann M, Thyzel R. Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report. J Am Intraocul Implant Soc. 1980;6(4):352–4.
  3. Гамидов АА, Большунов АВ. Современные технологии лазерной хирургии зрачковых мембран при артифакии. Вестник офтальмологии. 2007;(6):46–51.
  4. Khanzada MA, Jatoi SM, Narsani AK, Dabir SA, Gul S. Is the Nd:YAG laser a safe procedure for posterior capsulotomy? Pak J Ophthalmol. 2008;24(2):73–8.
  5. Steinert RF, Puliafito CA, Kumar SR, Dudak SD, Patel S. Cystoid macular edema, retinal detachment, and glaucoma after Nd:YAG laser posterior capsulotomy. Am J Ophthalmol. 1991;112(4):373–80.
  6. Гамидов АА, Сосновский ВВ, Боев ВИ, Бузыканова МА. Изучение факторов риска повреждения ИОЛ лазерным излучением. Вестник офтальмологии. 2006;(5):28–31.
  7. Иванов АН. Результаты неодимиевого ИАГ- лазерного воздействия при выраженной экссудативной реакции после имплантации интраокулярной линзы. В е с т н и к офтальмологии. 2002;(3):13–5.
  8. Желтов ГИ. Проблемы безопасности при работе с лазерами. В: Большунов АВ, ред. Вопросы лазерной офтальмологии. М.: Апрель; 2013. с. 15–31.
  9. Гамидов АА, Большунов АВ. Лазерная микрохирургия пленчатых мембран в области иридо-хрусталиковой диафрагмы. В: Большунов АВ, ред. Вопросы лазерной офтальмологии. М.: Апрель; 2013. c. 106–30.
  10. Birngruber R, Hillenkamp F, Gabel VP. Theoretical investigations of laser thermal retinal injury. Health Phys. 1985;48(6):781–96.
  11. Chofflet J, Amar JP, Deidier D. Retrospective study of complications of 329 YAG laser capsulotomies. Fortschr Ophthalmol. 1991;88(6):806–8. 12. Fankhauser F, Kwasniewska S. Laser in ophthalmology. Basic, diagnostic and surgical aspects. Hague: Kugler Publications; 2003. 450 p.
  12. Katzen LE, Fleischman JA, Trokel SL. The YAG laser: an American experience. J Am Intraocul Implant Soc. 1983;9(2):151–6.
  13. Gamidov AA, Bolshunov AV, Yuzhakov AV, Shcherbakov EM, Baum OI, Sobol EN. Optical transmission and laser ablation of pathologically changed eye lens capsule. Quantum Electronics. 2015;45(2):180–4. doi: http://dx.doi. org/10.1070/QE2015v045n02ABEH015641.
  14. Зельдович ЯБ, Райзер ЮП. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука; 1966. 688 c.
  15. Кочин НЕ, Кибель ИА, Розе НВ. Теоретическая гидромеханика. Ч. I. М.: Физматгиз; 1963. 584 c.
  16. Канель ГИ, Разоренов СВ, Уткин АВ, Фортов ВЕ. Ударно-волновые явления в конденсированных средах. М.: Янус-К; 1996. 408 c.
  17. Richtmayer RD, Morton KW. Difference methods for initial-value problems. New York: Interscience Publishers/John Wiley and Sons; 1967. 405 p.
  18. Саульев ВК. Интегрирование уравнений параболического типа методом сеток. М.: Физматлит; 1960. 324 c.
  19. Welch AJ. The thermal response of laser irradiated tissue. IEEE Journal of Quantum Electronics. 1984;QE-20(12):1471–81.

Copyright (c) 2016 Baum O.I., Romanov O.G., Gamidov A.A., Fedorov A.A., Romanov G.S., Zheltov G.I., Sobol E.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies