PRACTICAL IMPLEMENTATION OF IMPEDANCE REOGRAPHY IN CARDIOLOGY – NEW APPROACHES

Cover Page


Cite item

Full Text

Abstract

Background: The impedance rheocardiography is a  simple, inexpensive, noninvasive method of assessment of central hemodynamics that can be used for detection of cardiovascular remodeling and thus promote an improvement of cardiovascular mortality. Modern mathematical methods of data management could help to discover new possibilities of rheographic signal analysis. Aim: To demonstrate the potential of a  wavelet-analysis of rheocardiograms for identification of myocardial remodeling of patients with cardiovascular disorders. Materials and methods: The proposed method was validated in 12  healthy men aged from 20  to 25  years and 14  patients with arterial hypertension. We used a  polyreocardiograph, which records simultaneously the impedance (ICG), the electrocardiogram (ECG) and the phonogram (PCG). The function of the cardiovascular system was assessed based on the two-dimensional time-frequency distributions of wavelet transformed coefficients of differential rheogram curves. Results: The results of an isometric load test confirm the adequacy of stroke volume estimation based on the amplitude of wavelet coefficients and the scale of the E wave. In this technique, ISTI parameter was defined as the time interval between the R wave in the ECG and the maximum of the E wave in the wavelet image. The simultaneous time-frequency analysis of both the pulse and respiratory component of an ICG signal can be a basis for the development of complex functional respiratory tests. Conclusion: The approach proposed demonstrates the possibility to obtain the characteristics of the diastolic phase of the cardiac cycle, and allows for a more precise determination of the stroke volume. Data management is done automatically. These advantages are expected to be used for producing a mobile cardiograph for screening diagnostic.

About the authors

A. A. Dumler

Perm State Medical University named after E.A. Wagner; 26 Petropavlovskaya ul., Perm, 614990, Russian Federation

Email: rodion@icmm.ru
MD, PhD, Associate Professor, Chair of Therapy No 11 Russian Federation

S. Yu. Podtaev

NTC “FM Diagnostics”; 10 Lenina ul., Perm, 614000,
Russian Federation

Email: rodion@icmm.ru
PhD (in Physics and Mathematics), Research and Development Director Russian Federation

R. A. Stepanov

Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences; 1 Akademika Koroleva ul., Perm, 614013, Russian Federation

Author for correspondence.
Email: rodion@icmm.ru
PhD (in Physics and Mathematics), Leading Research Fellow Russian Federation

P. G. Frick

Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences; 1 Akademika Koroleva ul., Perm, 614013, Russian Federation

Email: rodion@icmm.ru
PhD (in Physics and Mathematics), Professor, Head of Laboratory of Physical Hydrodynamics Russian Federation

References

  1. Бойцов СА. Сосуды как плацдарм и мишень артериальной гипертензии. Актуальные вопросы болезней сердца и сосудов. 2006;1(3):35–40.
  2. Чазов ЕИ. Дизрегуляция и гиперреактивность организма как факторы формирования болезни. Кардиологический вестник. 2006;1(1):5–9.
  3. Devereux RB, Okin PM, Roman MJ. Left ventricular hypertrophy as a surrogate end-point in hypertension. Clin Exp Hypertens. 1999;21(5– 6):583–93.
  4. Braunwald E. Heart disease. 5th edition. New York: W.B. Saunders company; 1997. 165 p.
  5. Bour J, Kellett J. Impedance cardiography: a rapid and cost-effective screening tool for cardiac disease. Eur J Intern Med. 2008;19(6):399– 405. doi: 10.1016/j.ejim.2007.07.007.
  6. Lababidi Z, Ehmke DA, Durnin RE, Leaverton PE, Lauer RM. The first derivative thoracic impedance cardiogram. Circulation. 1970;41(4):651– 8. doi: 10.1161/01.CIR.41.4.651.
  7. Lozano DL, Norman G, Knox D, Wood BL, Miller BD, Emery CF, Berntson GG. Where to B in dZ/dt. Psychophysiology. 2007;44(1):113–9. doi: 10.1111/j.1469-8986.2006.00468.x.
  8. Cybulski G. Ambulatory impedance cardiography. The systems and their applications. Series: Lecture notes in electrical engineering. Vol. 76. Berlin; Heidelberg: Springer-Verlag; 2011. doi: 10.1007/978-3-642-11987-3.
  9. Pickett BR, Buell JC. Usefulness of the impedance cardiogram to reflect left ventricular diastolic function. Am J Cardiol. 1993;71(12):1099– 103. doi: 10.1016/0002-9149(93)90580-6.
  10. Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH. Development and evaluation of an impedance cardiac output system. Aerosp Med. 1966;37(12):1208–12.
  11. Ermishkin VV, Lukoshkova EV, Bersenev EYu, Saidova MA, Shitov VN, Vinogradova OL, Khayutin VM. Beat-by-beat changes in pre-ejection period during functional tests evaluated by impedance aortography: a step to a left ventricular contractility monitoring. In: IFMBE Proceedings. Vol. 17. Berlin; Heidelberg: Springer; 2007. p. 655–8. doi: 10.1007/978-3- 540-73841-1_169.
  12. Фрик ПГ, Подтаев СЮ, Попов АВ, Думлер АА, Степанов РА. Диагностика состояния сердечно-сосудистой системы на основе вейвлет-анализа данных неинвазивных измерений. Вестник Пермского научного центра УрО РАН. 2010;(1):9–18.
  13. Малла С. Вэйвлеты в обработке сигналов. Пер. с англ. М.: Мир; 2005. 672 с. 14. Гайтон А, Холл Д. Медицинская физиология. М.: Логосфера; 2008. 1273 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Dumler A.A., Podtaev S.Y., Stepanov R.A., Frick P.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies