EVALUATION OF AN ASSOCIATION BETWEEN RS5219 POLYMORPHISM OF KCNJ11 GENE AND THE RISK OF TYPE 2 DIABETES MELLITUS

Cover Page


Cite item

Full Text

Abstract

Background: Type 2 diabetes mellitus (T2DM) represents from 90 to 95% of all diabetes and usually occurs in obese individuals above 40 years of age, is highly prevalent, associated with high morbidity and mortality from complications involving, first of all, the cardiovascular system. The risk of T2DM is determined by combined effects of genetic and environmental factors. Genes associated with T2DM have been identified, including the gene of ATPdependent potassium channel (KCNJ11); the prevalence of its polymorphisms may have some regional characteristics.

Aim: To study an association between rs5219 KCNJ11  gene polymorphisms and the risk of T2DM in the population of the Moscow Region.

Materials and methods: The study involved 1050  subjects, including 311  men and 739 women, 139 of whom (17 men and 122 women) had T2DM. Genotyping of rs5219 KCNJ11 gene polymorphisms was performed with the use of allele-specific amplification, the real-time detection and TaqMan-probes complementary to the DNA polymorphism sites.

Results: The analysis of rs5219 KCNJ11 polymorphism frequencies showed that 14.2% of patients had TT genotype, 44.8 – CT genotype, and 41.1% – normal (wild) CC genotype. The prevalence of the mutant T allele was 36.6%, that of the C allele – 63.4%. The frequency of the mutant T allele in patients with obesity (body mass index≥30  kg/m²) was not significantly different from that in patients without obesity (body mass index<30 kg/m²) (38.8% and 35.7%, respectively, odds ratio (OR) 1.14, 95%  confidence interval (CI) 0.907–1.439, p=0.26). At the same time, energy expenditure at rest per kg of lean body mass was significantly lower in men who have rs5219 KCNJ11 gene polymorphism, both in homoand heterozygotes. The frequency of the T allele and TT genotype in diabetic patients was higher than in the control group. An association between TT genotype and the risk of T2DM was found (OR  2.35, CI 1.018–5.43, p=0.04).

Conclusion: In the population of the Moscow Region, gene polymorphism rs5219 KCNJ11 contributes to the risk of developing T2DM which is most obvious and statistically significant in homozygotes.

About the authors

E. Yu. Sorokina

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: fake@neicon.ru

MD, PhD, Leading Research Fellow, Laboratory of Nutritional Epidemiology and Genodiagnostics of Noncommunicable Diseases,

2/14 Ust'inskiy proezd, Moscow, 109240

Russian Federation

A. V. Pogozheva

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Author for correspondence.
Email: allapogozheva@yandex.ru

MD, PhD, Professor, Leading Research Fellow, Laboratory of Nutritional Epidemiology and Genodiagnostics of Noncommunicable Diseases,

2/14 Ust'inskiy proezd, Moscow, 109240

Russian Federation

E. V. Peskova

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: fake@neicon.ru

MD, Junior Research Fellow, Laboratory of Nutritional Epidemiology and Genodiagnostics of Noncommunicable Diseases,

2/14 Ust'inskiy proezd, Moscow, 109240

Russian Federation

O. N. Makurina

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: fake@neicon.ru

MD, Junior Research Fellow, Laboratory of Nutritional Epidemiology and Genodiagnostics of Noncommunicable Diseases,

2/14 Ust'inskiy proezd, Moscow, 109240

Russian Federation

A. K. Baturin

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: fake@neicon.ru

MD, PhD, Professor, Head of Laboratory of Nutritional Epidemiology and Genodiagnostics of Noncommunicable Diseases,

2/14 Ust'inskiy proezd, Moscow, 109240

Russian Federation

References

  1. International Obesity Task Force. Obesity the global epidemic [Internet]. Available from: http://www.iaso.org/iotf/obesity/obesitytheglobalepidemic.
  2. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14. doi: 10.1016/j.diabres.2009.10.007.
  3. McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010;363(24):2339–50. doi: 10.1056/NEJMra0906948.
  4. Vimaleswaran KS, Loos RJ. Progress in the genetics of common obesity and type 2 diabetes. Expert Rev Mol Med. 2010;12:e7. doi: 10.1017/S1462399410001389.
  5. Wang CP, Chung FM, Shin SJ, Lee YJ. Congenital and environmental factors associated with adipocyte dysregulation as defects of insulin resistance. Rev Diabet Stud. 2007;4(2):77–84. doi: 10.1900/RDS.2007.4.77.
  6. Батурин АК, Погожева АВ, Сорокина ЕЮ, Макурина ОН, Тутельян ВА. Изучение полиморфизма rs9939609 гена FTO у лиц с избыточной массой тела и ожирением. Вопросы питания. 2011;80(3):13–7.
  7. Батурин АК, Погожева АВ, Сорокина ЕЮ, Макурина ОН, Тутельян ВА. Изучение Trp64Arg полиморфизма гена β3-адренорецепторов у лиц с избыточной массой тела и ожирением. Вопросы питания. 2012;81(2):23–7.
  8. Батурин АК, Сорокина ЕЮ, Погожева АВ, Тутельян ВА. Генетические подходы к персонализации питания. Вопросы питания. 2012;81(6):4–11.
  9. Батурин АК, Сорокина ЕЮ, Погожева АВ, Пескова ЕВ, Макурина ОН, Тутельян ВА. Региональные особенности полиморфизма генов, ассоциированных с ожирением (rs9939609 гена FTO и Trp64Arg гена ADRB3), у населения России. Вопросы питания. 2014;83(2):35–41.
  10. Насибулина ЭС, Борисова АВ, Ахметов ИИ. Изучение ассоциации полиморфизма Ala54Thr гена FABP2 с риском развития ожирения, жировой массой тела и физической активностью. Вопросы питания. 2013;82(5):23–8.
  11. Bennett K, James C, Hussain K. Pancreatic β-cell KATP channels: Hypoglycaemia and hyperglycaemia. Rev Endocr Metab Disord. 2010;11(3):157–63. doi: 10.1007/s11154-010-9144-2.
  12. Mao H, Li Q, Gao S. Meta-analysis of the relationship between common type 2 diabetes risk gene variants with gestational diabetes mellitus. PLoS One. 2012;7(9):e45882. doi: 10.1371/journal.pone.0045882.
  13. Ali O. Genetics of type 2 diabetes. World J Diabetes. 2013;4(4):114–23. doi: 10.4239/wjd.v4.i4.114.
  14. Qiu L, Na R, Xu R, Wang S, Sheng H, Wu W, Qu Y. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. PLoS One. 2014;9(4):e93961. doi: 10.1371/journal.pone.0093961.
  15. Qin LJ, Lv Y, Huang QY. Meta-analysis of association of common variants in the KCNJ11-ABCC8 region with type 2 diabetes. Genet Mol Res. 2013;12(3):2990–3002. doi: 10.4238/2013. August.20.1.
  16. Cejková P, Novota P, Cerná M, Kolostová K, Nováková D, Kucera P, Novák J, Andel M, Weber P, Zdárský E. KCNJ11 E23K polymorphism and diabetes mellitus with adult onset in Czech patients. Folia Biol (Praha). 2007;53(5):173–5.
  17. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008;359(21):2220–32. doi: 10.1056/NEJMoa0801869.
  18. Cauchi S, Nead KT, Choquet H, Horber F, Potoczna N, Balkau B, Marre M, Charpentier G, Froguel P, Meyre D. The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC Med Genet. 2008;9:45. doi: 10.1186/1471-2350-9-45.
  19. Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, Nakashima E, Ohnaka K, Ikegami H, Sugiyama T, Katsuya T, Miyagishi M, Nakashima N, Nawata H, Nakamura J, Kono S, Takayanagi R, Kato N. Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes. 2009;58(7):1690–9. doi: 10.2337/db08-1494.
  20. Alsmadi O, Al-Rubeaan K, Wakil SM, Imtiaz F, Mohamed G, Al-Saud H, Al-Saud NA, Aldaghri N, Mohammad S, Meyer BF. Genetic study of Saudi diabetes (GSSD): significant association of the KCNJ11 E23K polymorphism with type 2 diabetes. Diabetes Metab Res Rev. 2008;24(2):137–40. doi: 10.1002/dmrr.777.
  21. Ezzidi I, Mtiraoui N, Cauchi S, Vaillant E, Dechaume A, Chaieb M, Kacem M, Almawi WY, Froguel P, Mahjoub T, Vaxillaire M. Contribution of type 2 diabetes associated loci in the Arabic population from Tunisia: a case-control study. BMC Med Genet. 2009;10:33. doi: 10.1186/1471-2350-10-33.
  22. Koo BK, Cho YM, Park BL, Cheong HS, Shin HD, Jang HC, Kim SY, Lee HK, Park KS. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population. Diabet Med. 2007;24(2):178–86. doi: 10.1111/j.1464-5491.2006.02050.x.
  23. Sakamoto Y, Inoue H, Keshavarz P, Miyawaki K, Yamaguchi Y, Moritani M, Kunika K, Nakamura N, Yoshikawa T, Yasui N, Shiota H, Tanahashi T, Itakura M. SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population. J Hum Genet. 2007;52(10):781–93. doi: 10.1007/s10038-007-0190-x.
  24. Hu C, Zhang R, Wang C, Wang J, Ma X, Lu J, Qin W, Hou X, Wang C, Bao Y, Xiang K, Jia W. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One. 2009;4(10):e7643. doi: 10.1371/journal.pone.0007643.
  25. Wang F, Han XY, Ren Q, Zhang XY, Han LC, Luo YY, Zhou XH, Ji LN. Effect of genetic variants in KCNJ11, ABCC8, PPARG and HNF4A loci on the susceptibility of type 2 diabetes in Chinese Han population. Chin Med J (Engl). 2009;122(20):2477–82.
  26. Zhou D, Zhang D, Liu Y, Zhao T, Chen Z, Liu Z, Yu L, Zhang Z, Xu H, He L. The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population. J Hum Genet. 2009;54(7):433–5. doi: 10.1038/jhg.2009.54.
  27. Wen J, Rönn T, Olsson A, Yang Z, Lu B, Du Y, Groop L, Ling C, Hu R. Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. PLoS One. 2010;5(2):e9153. doi: 10.1371/journal.pone.0009153.
  28. Cheung CY, Tso AW, Cheung BM, Xu A, Fong CH, Ong KL, Law LS, Wat NM, Janus ED, Sham PC, Lam KS. The KCNJ11 E23K polymorphism and progression of glycaemia in Southern Chinese: a long-term prospective study. PLoS One. 2011;6(12):e28598. doi: 10.1371/journal.pone.0028598.
  29. Danquah I, Othmer T, Frank LK, Bedu-Addo G, Schulze MB, Mockenhaupt FP. The TCF7L2 rs7903146 (T) allele is associated with type 2 diabetes in urban Ghana: a hospital-based case-control study. BMC Med Genet. 2013;14:96. doi: 10.1186/1471-2350-14-96.
  30. Gamboa-Meléndez MA, Huerta-Chagoya A, Moreno-Macías H, Vázquez-Cárdenas P, Ordóñez-Sánchez ML, Rodríguez-Guillén R, Riba L, Rodríguez-Torres M, Guerra-García MT, Guillén-Pineda LE, Choudhry S, Del Bosque-Plata L, Canizales-Quinteros S, Pérez-Ortiz G, Escobedo-Aguirre F, Parra A, Lerman-Garber I, Aguilar-Salinas CA, Tusié-Luna MT. Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population. Diabetes. 2012;61(12):3314–21. doi: 10.2337/db11-0550.
  31. Gupta V, Khadgawat R, Ng HK, Kumar S, Aggarwal A, Rao VR, Sachdeva MP. A validation study of type 2 diabetes-related variants of the TCF7L2, HHEX, KCNJ11, and ADIPOQ genes in one endogamous ethnic group of north India. Ann Hum Genet. 2010;74(4):361–8. doi: 10.1111/j.1469-1809.2010.00580.x.
  32. Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR, Mahajan A, Chavali S, Kumar MV, Prakash S, Dwivedi OP, Ghosh S, Yajnik CS, Tandon N, Bharadwaj D, Chandak GR. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes. 2010;59(8):2068–74. doi: 10.2337/db09-1386.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Sorokina E.Y., Pogozheva A.V., Peskova E.V., Makurina O.N., Baturin A.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies