VASCULAR CALCIFICATION, ATHEROSCLEROSIS AND BONE LOSS (OSTEOPOROSIS): NEW PATHOPHYSIOLOGICAL MECHANISMS AND FUTURE PERSPECTIVES FOR PHARMACOLOGICAL THERAPY

Cover Page


Cite item

Full Text

Abstract

Vascular calcification or ectopic mineralization in blood vessels is an active, cell-regulated process, increasingly recognized as a general cardiovascular risk factor. Ectopic artery mineralization is frequently accompanied by decreased bone mineral density or disturbed bone turnover and development of the osteoporosis. The latest data support the correlation of osteoporosis and atherosclerosis, indicating the parallel progression of two tissue destruction processes with increased fatal and nonfatal coronary events, as well as a  higher fracture risk. Patients with osteoporosis, have a  higher risk of cardiovascular diseases than subjects with normal bone. Many proteins responsible for bone formation and resorption have been identified in the arterial wall. Vascular calcification includes mostly osteogenic and, to a  lesser extent chondrogenic differentiation of osteoblasts and osteoclast-like cells. It has been shown that many of the regulators of bone formation and resorption some bone structural proteins, such as osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL) are also expressed in the atherosclerotic plaque. When RANKL binds to RANK, osteoclasts are activated and bone resorption occurs and processes of vascular calcification become also activated. OPG, protein homologue to receptor activator of nuclear factor-κB (RANK), can bind to RANKL, blocking the binding of RANKL to RANK, that results in inhibition of differentiation of preosteoclasts to mature osteoclasts, lower osteoclast capacity for resorption of bone mineral matrix, and development vascular calcification. The latest data supports that cathepsin K, a cysteine protease, can efficiently degrade type  I  and II collagen, both of which are major matrix components of the bone and atherosclerotic plaque. These findings further underscore the potential of cathepsin K as a target for novel molecules to treat osteoporosis and atherosclerosis. Thus, the discovery of the cytokine RANKL-RANK-OPG system and significant role of the cathepsin K in the process of bone remodeling, vascular calcification and atherosclerosis has made progress in understanding the mechanisms of disease development and possibly to develop new dual therapies. New therapies for osteoporosis and atherosclerosis that may potentially improve or augment existing treatments include the recently approved anti-receptor activator of NF-κB-ligand monoclonal antibody fms (denosumab) and the cathepsin  K  inhibitor odanacatib, presently in the late stage of clinical development.

About the authors

A. Dolzhenko

Martin-Luther University HalleWittenberg

Email: fake@neicon.ru

MD, PhD, Professor, Consultant, Institute of Molecular Medicine,

1 Heinrich-Damerow-Straße, Halle, 06112

Germany

T. Richter

Median Clinic

Email: fake@neicon.ru

MD, PhD, Head of Department of Cardiology,

4 Parkstraße, Bad Lausick, 04651

Germany

S. Sagalovsky

Median Clinic

Author for correspondence.
Email: s.sagalovsky@gmail.com

MD, PhD, Head of Department of Orthopedics,

4 Parkstraße, Bad Lausick, 04651

Germany

References

  1. Fuster K, Kelly BB, editors. Promoting Cardiovascular Health in the Developing World. Washington: National Academies Press; 2010. 482 p. doi: 10.17226/12815.
  2. Ireland R. Recent trends in cardiovascular epidemiology in Europe. EuroHeart conference, Brussels, Sept 2009 [Internet]. Brussels; 2009. Available from: http://www.eu-ems.com/event_images/Downloads/Robin%20Ireland%20[Compatibility%20Mode].pdf.
  3. World Health Organization. World health statistics 2009 [Internet]. Geneva: WHO Press; 2009. 290 p. Available from: http://www.who.int/whosis/whostat/EN_WHS09_Full.pdf.
  4. Dennison EM, Cooper C. Osteoporosis in 2010: building bones and (safely) preventing breaks. Nat Rev Rheumatol. 2011;7(2):80–2. doi: 10.1038/nrrheum.2010.227.
  5. Reda A, Bartoletti MG. Osteoporosis: epidemiology, clinical and biological aspects. BMC Geriatr. 2010;10(Suppl 1):L71–5. doi: 10.1186/1471-2318-10-S1-L71.
  6. IOF World Congress on Osteoporosis and 10th European Congress of Clinical and Economic aspects of Osteoporosis and Osteoarthritis. IOF World Congress. Osteoporosis Int. 2010;21(Suppl 1):S1–6. doi: 10.1007/s00198-010-1244-z.
  7. Harvey N, Dennison EM, Cooper C. Osteoporosis: impact on health and economics. Nat Rev Rheumatol. 2010;6(2):99–105. doi: 10.1038/nrrheum.2009.260.
  8. Dhanwal DK, Dennison EM, Harvey NC, Cooper C. Epidemiology of hip fracture: worldwide geographic variation. Indian J Orthop. 2011;45(1):15–22. doi: 10.4103/0019-5413.73656.
  9. von Mühlen D, Allison M, Jassal SK, Barrett-Connor E. Peripheral arterial disease and osteoporosis in older adults: the Rancho Bernardo Study. Osteoporosis Int. 2009;20(12):2071–8. doi: 10.1007/s00198-009-0912-3.
  10. Crepaldi G, Maggi S. Epidemiologic link between osteoporosis and cardiovascular disease. J Endocrinol Invest. 2009;32(4 Suppl):2–5.
  11. Celik C, Altunkan S, Yildirim MO, Akyuz M. Relationship between decreased bone mineral density and subclinical atherosclerosis in postmenopausal women. Climacteric. 2010;13(3):254–8. doi: 10.3109/13697130903291041.
  12. Dobnig H, Hofbauer L. Osteoporosis and atherosclerosis: common pathway. J Clin Endocrinol. 2009;2(Suppl 3):12–6.
  13. Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J. 2014;35(42):2950–9. doi: 10.1093/eurheartj/ehu299.
  14. Mendis S, Puska P, Norrving B, editors. Global Atlas on cardiovascular disease prevention and control. Geneva: WHO Press; 2011. 164 p.
  15. Periard D, Folly A, Meyer MA, Gautier E, Krieg MA, Hayoz D. [Aortic calcification and risk of osteoporotic fractures]. Rev Med Suisse. 2010;6(271):2200–3. French.
  16. Tabas I, Garcia-Cardena G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209(1):13–22. doi: 10.1083/jcb.201412052.
  17. Manduteanu I, Simionescu M. Inflammation in atherosclerosis: a cause or a result of vascular disorders? L Cell Mol Med. 2012;16(9):1978–90. doi: 10.1111/j.1582-4934.2012.01552.x.
  18. Bai L, Lutgens E, Heeneman S. Cathepsins in atherosclerosis. In: George SJ, Johnson J, editors. Atherosclerosis: molecular and cellular mechanisms. Hoboken: Wiley-Blackwell; 2010. p. 173–91. doi: 10.1002/9783527629589.ch9.
  19. Lutgens SP, Cleutjens KB, Daemen MJ, Heeneman S. Cathepsin cysteine proteases in cardiovascular disease. FASEB J. 2007;21(12):3029–41. doi: 10.1096/fj.06-7924com.
  20. Boonen S, Rosenberg E, Claessens F, Van der Schueren D, Papapoulos S. Inhibition of cathepsin K for treatment of osteoporosis. Curr Osteoporosis Rep. 2012;10(1):73–9. doi: 10.1007/s11914-011-0085-9.
  21. Langdahl BL. New treatment of osteoporosis. Osteoporos Sarcopenia. 2015;1(1):4–21. doi: http://dx.doi.org/10.1016/j.afos.2015.07.007.
  22. Costa AG, Cusano NE, Silva BC, Cremers S, Bilezikian JP. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nature Rev Rheumatol. 2011;7(8):447–56. doi: 10.1038/nrrheum.2011.77.
  23. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D. Cysteine cathepsins: from structure, function and regulation in new frontiers. Biochem Biophys Acta. 2012;1824(1):68–88. doi: 10.1016/j.bbapap.2011.10.002.
  24. Brömme D, Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Invest Drugs. 2009;18(5):585–600. doi: 10.1517/13543780902832661.
  25. Rucci N. Molecular biology of bone remodeling. Clin Cases Miner Bone Metab. 2008;5(1):49–56.
  26. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodeling at a glance. J Cell Sci. 2011;124(Pt 7):991–8. doi: 10.1242/jcs.063032.
  27. Sagalovsky S, Schönert M. RANKL-RANKOPG system and bone remodeling: a new approach to the treatment of osteoporosis. Clin Exp Pathol. 2011;10(2):146–53.
  28. Datta HK, Ng WF, Walker JA, Tuck SP, Varanasi SS. The cell biology of bone metabolism. J Clin Pathol. 2008;61(5):577–87. doi: 10.1136/jcp.2007.048868.
  29. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103–8. doi: 10.1074/jbc.R109.041087.
  30. Jensen ED, Gopalakrishnan R, Westendorf JJ. Regulation of gene expression in osteoblasts. Biofactors. 2010;36(1):25–32. doi: 10.1002/biof.72.
  31. Fakhry M, Hamade E, Bardan B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation toward osteoblasts. World J Stem Cells. 2013;5(4):136–48. doi: 10.4252/wjsc.v5.i4.136.
  32. Komori T. Regulation of osteoblast differentiation by RUNX2. Adv Exp Med Biol. 2010;658:43–9. doi: 10.1007/978-1-4419-1050-9_5.
  33. Wojtowicz AM, Templeman KL, Hutmacher DW, Guldberg RE, Garcia AJ. RUNX2 overexpression in bone marrow stromal cells accelerates bone formation in critical-sized femoral defects. Tissue Eng Part A. 2010;16(9):2795–808. doi: 10.1089/ten.TEA.2010.0025.
  34. Tu Q, Zhang J, James L, Dickson J, Tang J, Yang P, Chen L. Cbfa1/Runx2 – deficiency delays bone wound healing and locally delivered Cbfa1/Runx2 promotes bone repair in animal models. Wound Repair Regen. 2007;15(3):404–12. doi: 10.1111/j.1524-475X.2007.00243.x.
  35. James AW. Review of signaling pathways governing MCS osteogenic and adipogenic differentiation. Scientifica (Cairo). 2013;2013:684736. doi: 10.1155/2013/684736.
  36. Martin JW, Zielenska M, Stein GS, Van Wijnen AJ, Squire JA. The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma. 2011;2011:282745. doi: 10.1155/2011/282745.
  37. Zhu F, Friedman MS, Luo W, Woolf P, Hankenson KD. The transcription factor Osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J Cell Physiol. 2012;227(6):2677–85. doi: 10.1002/jcp.23010.
  38. Kirkham GR, Cartmell SH. Genes and proteins involved in the regulation of osteogenesis. In: Ashammakhi N, Reis R, Chiellini E, editors. Topics in Tissue Engineering. Vol. 3. New York: Raven Press; 2007. p. 1–22.
  39. Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010;339(1):189–95. doi: 10.1007/s00441-009-0832-8.
  40. Van Blitterswijk CA, De Boer J. Tissue Engineering. 2nd ed. New York: Academic Press; 2015. 839 p.
  41. Kini U, Nandeesh BN. Physiology of bone formation, remodeling and metabolism. In: Fogelman I, Gnanasegaran G, van der Wall H, editors. Radionuclide and Hybrid Bone Imaging. Heidelberg: Springer-Verlag; 2012. p. 29–57.
  42. Parra-Torres AY, Valdes-Flores M, Orozco L, Valazquez-Cruz R. Molecular aspects of bone remodeling. In: Valdes-Flores M, editor. Topics in Osteoporosis. Rijeka: INTECH; 2013. p. 1–27.
  43. Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunder GK, Goldberg HA. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone. 2007;41(3):462–73. doi: 10.1016/j.bone.2007.04.191.
  44. Malval L, Wade-Gueye NM, Boudiffa M, Fei J, Zimgibi R, Chen F, Laroche N, Rouse JP, Burt-Pichart B, Duboeuf F, Boivin C, Jurdic P, Lafage-Proust MH, Amedee J, Vico L, Rosmant J, Aubin JE. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med. 2008;205(5):1145–53. doi: 10.1084/jem.20071294.
  45. Jacques C, Gooset M, Berenbaum F, Gabay C. The role of IL-1 and IL-RA in joint inflammation and cartilage degradation. In: Litwack G, editor. Interleukins, vitamins and hormones. Advances in research and application. New York: Academic Press; 2012. p. 372–98.
  46. Tseng W, Lu J, Bishop GA, Watson GA, Sage AP, Demer L, Tintut Y. Regulation of interleukin-6 expression in osteoblasts by oxidized phospholipids. J Lipid Res. 2010;51(5):1010–6. doi: 10.1194/jlr.M001099.
  47. Lombardi G, Di Somma C, Rubino M, Faggiano A, Vuolo L, Guerra E, Contraldi P, Savastano S, Colao A. The roles of parathyroid hormone in bone remodeling: prospects for novel therapeutics. J Endocrinol Invest. 2011;34(7 Suppl):18–22.
  48. Takahashi N, Udagawa N, Suda T. Vitamin D endocrine system and osteoblast. Bonekey Rep. 2014;3:495. doi: 10.1038/bonekey.2013.229.
  49. Almedia M, Iyer S, Martin-Millan M, Bartell SM, Han L, Ambrogini E, Onal M, Xiong J, Weinstein RS, Jilka RL, O’Brien CA, Manolagas SC. Estrogen receptor-α signaling progenitors stimulates cortical bone accrual. J Clin Invest. 2013;123(1):394–404. doi: 10.1172/JCI65910.
  50. Soysa NS, Alles N, Aoki K, Ohya K. Osteoclast formation and differentiation: an overview. J Med Dent Sci. 2012;59(3):65–74.
  51. Perez-Sayans M, Samoza-Martin JM, Barros-Anqueira F, Rey JM, Garcia-Garcia A. RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(5):679–86. doi: 10.1016/j.tripleo.2009.10.042.
  52. Weitzmann NM. The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo). 2013;2013:125705. doi: 10.1155/2013/125705.
  53. Kohli SS, Kohli VS. Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implication. Indian J Endocrinol Metab. 2011;15(3):175–81. doi: 10.4103/2230-8210.83401.
  54. Sims NA, Martin TJ. Coupling the activates of bone formation and resorption: a multitude of signal within the basic multicellular unit. Bonekey Rep. 2014;3:481. doi: 10.1038/bonekey.2013.215.
  55. Kasagi S, Chen W. TGF-beta 1 on osteoimmunology and the bone compaunet cells. Cell Biosci. 2013;3(1):4. doi: 10.1186/2045-3701-3-4.
  56. Lee MS, Kim HS, Yeon T, Choi SW, Chung CH, Kwak HB, Oh J. GM-CSF regulates fusion of mononuclear osteoclasts into bone-resorbing osteoclasts by activating the Ras/ERK pathway. J Immunol. 2009;183(5):3390–9. doi: 10.4049/jimmunol.0804314.
  57. Nelson CA, Warren JT, Wang MW, Teitelbaum SL, Fremont DH. RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor. Structure. 2012;20(11):1971–82. doi: 10.1016/j.str.2012.08.030.
  58. Tat SK, Pelletier JP, Lajeunesse D, Fahmi H, Lavigne M, Martel-Pelletier J. The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappaB ligand (RANKL) in human osteoartritic subchondral bone osteoblast is an indicator of the metabolic state of these disease cells. Clin Exp Reumatol. 2008;26(2):295–304.
  59. Pangrazio A, Cassani B, Guerrini MM, Crockett JC, Marrella V, Zammataro L, Strina D, Schulz A, Schlack C, Kornak U, Mellis DJ, Duthie A, Helfrich MH, Durandy A, Moshous D, Vellodi A, Chiesa R, Veys P, Lo Iacono N, Vezzoni P, Fischer A, Villa A, Sobacchi C. RANKL-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutation. J Bone Miner Res. 2012;27(2):342–51. doi: 10.1002/jbmr.559.
  60. Iacono NL, Blair HC, Poliani PL, Marrella V, Ficara F, Cassani B, Facchetti F, Fontana E, Guerrini MM, Traggiai E, Schena F, Paulis M, Mantero S, Inforzato A, Valaperta S, Pangrazio A, Crisafulli L, Maina V, Kostenuik P, Vezzoni P, Villa A, Sobacchi C. Osteopetrosis rescue upon RANKL administration to RANKL (-/-) mice: a new therapy for human RANKL-dependent ARO. J Bone Miner Res. 2012;27(12):2501–10. doi: 10.1002/jbmr.1712.
  61. Hodge JM, Collier FM, Pavlos NJ, Kirkland MA, Nicholson GC. M-CSF potently augments RANKL-induced reception activation in mature human osteoclasts. PLOS One. 2011;6(6):e21462. doi: 10.1371/journal.pone.0021462.
  62. Darnay BG, Besse A, Poblenz A, Lamothe B, Jacoby JJ. TRAFs in RANKL signaling. In: Hao Wu, editor. TNF Receptor Associated Factors (TRAFs). New York: Landes Bioscience and Springer Science; 2007. p. 152–9.
  63. Lin FT, Lin VY, Lin VT, Lin WC. TRIP6 antagonized the recruitment of A20 and CYLD to TRAF6 to promote the LPA2 receptor-mediated TRAF6 activation. Cell Discov. 2016;2:15048. doi: 10.1038/celldisc.2015.48.
  64. Boyce BF, Xing L. Biology of RANK. RANKL and osteoprotegerin. Arthritis Res Ther. 2007;9 Suppl 1:S1. doi: 10.1186/ar2165.
  65. Boyce BF, Rosenberg E, De Papp AE, Duong L. The osteoblast, bone remodeling, and treatment of metabolic bone disease. Eur J Clin Invest. 2012;42(12):1332–41. doi: 10.1111/j.1365-2362.2012.02717.x.
  66. Labovsky V, Vallone VB, Martinez LM, Otaegui J, Chasseing NA. Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derivated factor-1 and their receptors in epithelial metastatic breast cancer cell lines. Cancer Cell Internat. 2012;12(1):29. doi: 10.1186/1475-2867-12-29.
  67. Yeung RS. Osteoprotegerin/Osteoprotegerin ligand family: role in inflammation and bone loss. J Rheumatol. 2009;31(5):844–6.
  68. Kuroyanagi G, Otsuka T, Yamamoto N, Matsushima-Nishiwaki R, Nakakami A, Mizutani J,
  69. Kozawa O, Tokuda H. Down-regulation by resveratol of basic fibroblast growth factor-stimulated osteoprotegerin synthesis through suppression of Akt in osteoblasts. Int J Mol Sci. 2014;15(10):17886–900. doi: 10.3390/ijms151017886.
  70. Sagalovsky S. Bone remodeling: cellular-molecular biology and cytokine RANK-RANKL-osteoprotegerin (OPG) system and growth factors. Crimea Journal of Experimental and Clinical Medicine. 2013;3(1–2):36–43.
  71. Liu W, Zhang X. Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissue (review). Mol Med Rep. 2015;11(5):3212–8. doi: 10.3892/mmr.2015.3152.
  72. Pietschniann P, Mechtcheriakova D, Mechtcheriakova A, Föger-Samwald U, Ellinger I.
  73. Immunology of osteoporosis (a mini-review). Gerontology. 2016;62(2):128–37. doi: 10.1159/000431091.
  74. Van Compenhout A, Golledge J. Osteoprotegerin, vascular calcification and atherosclerosis. Atherosclerosis. 2009;204(2):321–9. doi: 10.1016/j.atherosclerosis.2008.09.033.
  75. McManus S, Chamoux E, Bisson M, Roux S. Modulation of tumor necrosis factor related apoptosis-inducing ligand (TRAIL) receptors in a human osteoclast model in vitro. Apoptosis. 2012;17(2):121–31. doi: 10.1007/s10495-011-0662-5.
  76. Sandra F, Hendarmin L, Nakamura S. Osteoprotegerin (OPG) binds with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) suppression of TRAIL-induced apoptosis in ameloblastomas. Oral Oncol. 2006;42(4):415–20. doi: 10.1016/j.oraloncology.2005.09.009.
  77. Walsh MC, Choi Y. Biology of the RANKL-RANKOPG system in immunity, bone and beyond. Front Immunol. 2014;5:511. doi: 10.3389/fimmu.2014.00511.
  78. Grigoropoulou P, Eleftheriadou I, Zoupas C, Tentolouris N. The role of the Osteoprotegerin/ RANKL/RANK system in diabetic vascular disease. Curr Med Chem. 2011;18(31):4813–9. doi: 10.2174/092986711797535281.
  79. Benslimane-Ahmim Z, Heymann D, Dizier B, Lokaiczyk A, Brion R, Laurendean I, Bieche I, Smadia DM, Galy-Fauroux I, Colliec-Jouault S, Fischer AM, Boisson-Vidal C. Osteoprotegerin, a new actor in vasculogenesis, stimulates endothelial colony-forming cells properties. J Thromb Haemostat. 2011;9(4):834–43. doi: 10.1111/j.1538-7836.2011.04207.x.
  80. Wright HL, McCarthy HS, Middleton J, Marshall MI. RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med. 2009;2(1):56–64. doi: 10.1007/s12178-009-9046-7.
  81. Kelesidis T, Currier JS, Yang OO, Brown TT. Role RANKL-RANK/osteoprotegerin pathway in cardiovascular and bone disease associated with HIV infection. AIDS Rev. 2014;16(3):123–33.
  82. Sagalovsky S, Richter T. Pathophysiological entity of cellulomolecular mechanisms of development of osteoporosis and atherosclerosis of vessels. Int Med J. 2012;18(4):71–8.
  83. Stevenson JC. New Techniques in Metabolic Bone Disease. London: Wright; 2013. 315 p.
  84. Kleinhaus C, Schmid FF, Schmid FV, Kluger PJ. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D. J Biotechnol. 2015;205:101–10. doi: 10.1016/j.jbiotec.2014.11.039.
  85. Zou W, Teitelbaum SL. Integrins, growth factors, and the osteoclast cytoskeleton. Ann N Y Acad Sci. 2010;1192:27–31. doi: 10.1111/j.1749-6632.2009.05245.x.
  86. Lowin T, Straub RH. Integrins and their ligands in rheumatoid arthritis. Arthritis Res Therapy. 2011;13(5):244. doi: 10.1186/ar3464.
  87. Florencio-Silva R, Da Silva Sasso GR, Sasso-Cerri E, Simones MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746. doi: 10.1155/2015/421746.
  88. Boyce BF, Yao Z, Xing L. Osteoclasts have multiple roles in bone in addition bone resorption. Crit Rev Eukaryot Gene Expr. 2009;19(3):171–80. doi: 10.1615/CritRevEukarGeneExpr.v19.i3.10.
  89. Ross PF. Osteoclast biology and bone resorption. In: Rosen CJ, Ross PF, editors. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Washington: ASBMR; 2013. p. 25–33. doi: 10.1002/9781118453926.ch3.
  90. Schaller S, Henriksen K, Sörensen MG, Karsdal MA. The role of chloride channels in osteoclasts: CIC-7 as a target for osteoporosis treatment. Drug News Perspect. 2005;18(8):489–95. doi: 10.1358/dnp.2005.18.8.944546.
  91. Hall BK. Bones and Cartilage. Development and Evolutionary Skeletal Biology. 2nd ed. New York: Academic Press; 2015. 869 p.
  92. Heinz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J Immunol Res. 2015;2015:615486. doi: 10.1155/2015/615486.
  93. Margolis DS, Szivek JA, Lai LW, Lien YH. Phenotypic characteristics of bone in carbonic anhydrase II-deficient mice. Calcif Tissue Int. 2008;82(1):66–76. doi: 10.1007/s00223-007-9098-x.
  94. Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol. 2012;44(9):1422–35. doi: 10.1016/j.biocel.2012.05.014.
  95. Holliday SL. Vacuolar H+-ATPase: an essential multitasking enzyme in physiology and pathophysiology. New J Sci. 2014;2014:675430. doi: http://dx.doi.org/10.1155/2014/675430.
  96. Blair HC, Simonet S, Lacey DI, Zaidi M. Osteoclast biology. In: Marcus R, Feldman D, Nelson D, Rosen CJ, editors. Fundamentals of Osteoporosis. New York: Academic Press; 2010. p. 113–30.
  97. Shinohara C, Yamashita K, Matsuo T, Kitamura SS, Kawano F. Effects of carbonic anhydrase inhibitor acetazolamide (AZ) in osteoclasts and bone structure. J Hard Tissue Biol. 2007;2007(1):115–23.
  98. Henriksen K, Sörensen MG, Jensen VK, Dziegiel MH, Nosiean O, Karsdal MA. Ion transportes involved in acidication of the resorption lacuna in osteoclasts. Calcif Tissue Int. 2008;83(3):230–42. doi: 10.1007/s00223-008-9168-8.
  99. Morethson P. Extracellular fluid flow and chloride content modulate H(+) transport by osteoclasts. BMC Cell Biol. 2015;16(1):20–7. doi: 10.1186/s12860-015-0066-4.
  100. Duong LT. Inhibition of cathepsin K: blocking osteoclast bone resorption and more. IBMS BoneKEy. 2013;2013:396.
  101. Wilson SR, Peters C, Saftig P, Brömme D. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption. J Biol Chem. 2009;284(4):2584–92. doi: 10.1074/jbc.M805280200.
  102. Brömme D, Wilson S. Role of cysteine cathepsins in extracellular proteolysis. In: Parks WC, Mecham RP, editors. Extracellular Matrix Degradation. Heidelberg: Springer; 2011. p. 23–52.
  103. Duong LT. Therapeutic inhibition of cathepsin K-reducing bone resorption while maintaining bone formation. Bone Key Rep. 2012;1:67. doi: 10.1038/bonekey.2012.67.
  104. Brömme D. Bone remodeling: cathepsin K in collagen turnover. In: Behrendt N, editor. Matrix Proteasomes in Health and Disease. Weinheim: Wiley-VCH; 2012. p. 79–97. doi: 10.1002/9783527649327.ch4.
  105. Hayman AR. Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity. 2008;41(3):218–23. doi: 10.1080/08916930701694667.
  106. Blumer MJ, Hausott B, Schwarzer C, Nayman AR, Stempel J, Fritsch H. Role of tartrate-resistant acid phosphatase (TRAP) in long bone development. Mech Dev. 2012;129(5–8):162–76. doi: 10.1016/j.mod.2012.04.003.
  107. O’Rourke C, Shelton G, Hutcheson JD, Burke MF, Martyn T, Thayer TE, Shakartzi HR, Buswell MD, Tainsh RE, Yu B, Baqchi A, Rhee DK, Wu C, Derwall M, Buys ES, Yu PB, Bloch KD, Aikawa E, Bloch DB, Malhotra R. Calcification of vascular smooth muscle cells and imaging of aortic calcification and inflammation. J Vis Exp. 2016;111:54017. doi: 10.3791/54017.
  108. Lanzer P, Boehm M, Sorribas V, Thiriet M, Janzen J, Zeller T, St Hilaire C, Shanahan C. Medial vascular calcification revised: review and perspectives. Eur Heart J. 2014;35(23):1515–25. doi: 10.1093/eurheartj/ehu163.
  109. Ferreira C, Ziegler S, Gahl W. Generalized arterial calcification of infancy. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJ, Bird TD, Ledbetter N, Mefford HC, Smith RJ, Stephens K, editors. Gene Reviews [Internet]. Seattle: University of Washington; 1993–2015. p. 25–36. Available from: http://www.ncbi.nlm.nih.gov/books/NBK253403/.
  110. Nitschke I, Baujat G, Botschen U, Wittkampf T, Du Moulin M, Stella J, Le Merrer M, Guest G, Lambot K, Tazaroute-Pinturier MF, Chassaing N, Roche O, Feenstra I, Loechner K, Deshpande C, Garber SJ, Chikarmane R, Steinmann B, Shahinyan T, Martorell L. Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by multations in either ENPP1 or ABCC6. Am J Human Gen. 2012;90(1):25–39. doi: 10.1016/j.ajhg.2011.11.020.
  111. Schlieper G, Schurgers L, Brandenburg V, Reutelingspreger C, Floege J. Vascular calcification in chronic kidney disease: an update. Nephrol Dial Transplant. 2016;31(1):31–9. doi: 10.1093/ndt/gfv111.
  112. Dolzhenko AT, Richter T, Sagalovsky S. Role of nuclear factor (NF)-κB protein in atherosclerosis and diabetes: a potential therapeutic target. Problems of Endocrine Pathology (Ukrainian). 2015;54(4):87–104.
  113. Pajak A, Kozela M. Cardiovascular disease in Central and East Europe. Public Health Rev. 2012;33(2):416–35.
  114. Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe – epidemiological update 2015. Eur Heart J. 2015;36(40):2696–705. doi: 10.1093/eurheartj/ehv428.
  115. Huang CL, Wu IH, Wu YW, Hwang JJ, Wang SS, Chen WJ, Lee WJ, Yang WS. Association of lower extremity arterial calcification with amputation and mortality in patients with symptomatic peripheral artery disease. PLoS One. 2014;9(2):e90201. doi: 10.1371/journal.pone.0090201.
  116. Zhu D, Mackenzie NC, Farguharson C, MacRoe VE. Mechanisms and clinical consequences of vascular calcification. Front Endocrinol (Lausanne). 2012;3(1):95–110. doi: 10.3389/fendo.2012.00095.
  117. Sage AP, Tintut J, Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol. 2010;7(9):528–36. doi: 10.1038/nrcardio.2010.115.
  118. Bentzon JF, Otsuka F, Virmani R, Falk E. Acute coronary syndromes compendium. Mechanisms of plaque formation and rupture. Circulation Res. 2014;114(12):1852–66. doi: 10.1161/CIRCRESAHA.114.302721.
  119. Kanwar SS, Stone GW, Singh M, Wirmani R, Olin J, Akasaka T, Narula J. Acute coronary syndromes without coronary plaque rupture. Nat Rev Cardiol. 2016;13(5):257–65. doi: 10.1038/nrcardio.2016.19.
  120. Angelovich T, Hearps AC, Jaworowski A. Inflammation-induced foam cell formation in chronic inflammatory disease. Immunol Cell Biol. 2015;93(8):683–93. doi: 10.1038/icb.2015.26.
  121. Buckley ML, Ramji DP. The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim Biophys Acta. 2015;1852(7):1498–510. doi: 10.1016/j.bbadis.2015.04.011.
  122. Thompson B, Towler DA. Arterial calcification and bone physiology: role of the bone-vascular axis. Nature Rev Endocrinol. 2012;8(9):529–43. doi: 10.1038/nrendo.2012.36.
  123. Cecelja M, Chowienczyk P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc Dis. 2012;1(4):cvd.2012.012016. doi: 10.1258/cvd.2012.012016.
  124. D’Amelio P, Isaia C, Isaia GC. The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. J Endocrinol Invest. 2009;32(4 Suppl):6–9.
  125. Papadopouli AE, Klonaris CN, Theocharis SE. Role of OPG/RANKL/RANK axis on the vasculature. Histol Histopathol. 2008;23(4):497–506.
  126. Byon CH, Chen Y. Molecular mechanisms of vascular calcification in chronic kidney disease: the link between bone and vasculature. Curr Osteoporosis Rep. 2015;13(4):206–15. doi: 10.1007/s11914-015-0270-3.
  127. Kapelouzon A, Tsourelis L, Kaklamanis L, Kostakis A, Cokkinos DV. Serum and tissue biomarkers in aortic stenosis. Global Cardiol Sci Pract. 2015;2015(4):49. doi: 10.5339/gcsp.2015.49.
  128. Lee SH, Choi Y. Communication between the skeletal and immune systems. Osteoporos Sarcopenia. 2015;1(2):81–91. doi: http://dx.doi.org/10.1016/j.afos.2015.09.004.
  129. Heymann MF, Herisson F, Davaine JM, Charrier C, Battaglia S, Passuti N, Lambert G, Goueffic Y, Heymann D. Role of the OPG/RANK/RANKL triad in calcification of the atheromatous plaque: comparison between carotid and femoral beds. Cytokine. 2012;58(2):300–6. doi: 10.1016/j.cyto.2012.02.004.
  130. Kiechl S, Werner P, Knoflach M, Furtner M, Willeit Y, Schett G. The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. Expert Rev Cardiovasc Ther. 2006;4(6):801–11. doi: 10.1586/14779072.4.6.801.
  131. Nakamichi Y, Udagawa N, Kobayashi Y, Nakamara M, Yamamoto Y, Yamashita T, Mizoguchi T, Sato M, Mogi M, Penninger JM, Takahashi N. Osteoprotegerin reduces the serum level of receptor activator of NF-kappaB ligand derived from osteoblasts. J Immunol. 2007;178(1):192–200. doi: 10.4049/jimmunol.178.1.192.
  132. Zhou S, Fang X, Xin H, Li W, Qiu H, Guan S. Osteoprotegerin inhibits calcification of vascular smooth muscle cell via down regulation of the Notch1-RBP-Jk/Msx2 signaling pathway. PLoS One. 2013;8(7):e68987. doi: 10.1371/journal.pone.0068987.
  133. Liberman M, Pesaro AE, Carmo LS, Serrano CV. Vascular calcification: pathophysiology and clinical implications. Einstein (Sao Paulo). 2013;11(3):376–82. doi: http://dx.doi.org/10.1590/S1679-45082013000300021.
  134. De Ciriza PC, Lawrie A, Varo N. Osteoprotegerin in cardiometabolic disorders. Int J Endocrinol. 2015;2015:564934. doi: 10.1155/2015/564934.
  135. Byon CH, Sun Y, Chen J, Yuan K, Mao X, Heath JM, Anderson PG, Tintut Y, Demer LL, Wang D, Chen Y. RUNX2-upregulated RANKL in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Atheroscler Thromb Vasc Biol. 2011;31(6):1387–96. doi: 10.1161/ATVBAHA.110.222547.
  136. Panizo S, Cardus A, Encinas M, Parisi E, Valcheva P, Lopez-Ongil S, Coll B, Fernandez E, Valdiviolso JM. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ Res. 2009;104(9):1041–8. doi: 10.1161/CIRCRESAHA.108.189001.
  137. Venuraju SM, Yerramasu A, Corder R, Lahiri A. Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J Am Cell Cardiol. 2010;55(19):2049–61. doi: 10.1016/j.jacc.2010.03.013.
  138. Wasilewska A, Rybi-Szuminska A, Zoch-Zwierz W. Serum RANKL, osteoprotegerin (OPG), and RANKL/OPG ratio in nephrotic children. Pediatr Nephrol. 2010;25(10):2067–75. doi: 10.1007/s00467-010-1583-1.
  139. Pardoli E, Ten Dijke P. TGF-ß signaling and cardiovascular disease. Int J Biol Sci. 2012;8(2):195–213. doi: 10.7150/ijbs.3805.
  140. Deuell KA, Callegari A, Giachelli CM, Rosenfeld ME, Scatena M. RANKL enhances macrophage paracrine pro-calcific in high phosphate-treated smooth muscle cells: dependence of IL-6 and TNF-α. J Vasc Res. 2012;49(6):510–21. doi: 10.1159/000341216.
  141. Di Bartolo BA, Kavurma MM. Regulation and function of RANKL in arterial calcification. Curr Pharm Res. 2014;20(37):5853–61. doi: 10.2174/1381612820666140212205455.
  142. Demer LL, Tintut J. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008;117(22):2938–48. doi: 10.1161/CIRCULATIONAHA.107.743161.
  143. Caidahl K, Ueland T, Aukrust P. Osteoprotegerin: a biomarker with many faces. Atheroscler Thromb Vasc Biol. 2010;30(9):1684–6. doi: 10.1161/ATVBAHA.110.208843.
  144. Lieb W, Gona P, Larson MG, Massaro JM, Lipinska I, Keaney JF, Rong J, Corey D, Hoffmann U, Fox CS, Vasan RS, Benjamin EJ, O’Donnell C, Kathiresan S. Biomarkers of the osteoprotegerin pathway: clinical correlates, subclinical disease, incident cardiovascular disease, and mortality. Artherioscler Thromb Vasc Biol. 2010;30(9):1849–54. doi: 10.1161/ATVBAHA.109.199661.
  145. Vik A, Mathiesen EB, Brox J, Wilsgaard T, Njølstad I, Jørgensen L, Hansen JB. Serum osteoprotegerin is a predictor for incident cardiovascular disease, and mortality in a general population: the Tromsö Study. J Thromb Haemostatic. 2011;9(4):638–44. doi: 10.1111/j.1538-7836.2011.04222.x.
  146. Bennet BJ, Scatena M, Kirk EA, Rattazzi M, Varon RM, Averill M, Schwartz SM, Giachelli CM, Rosenfeld ME. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice. Arterioscler Thromb Vasc Biol. 2006;26(9):2117–24. doi: 10.1161/01.ATV.0000236428.91125.e6.
  147. Ren MJ, Sui SJ, Zhang Y, Xu FY, Xu XQ, Zhao JJ, Du YM, Liu WH. Increased plasma osteoprotegerin levels are associated with the presence and severity of acute coronary syndrome. Acta Cardiol. 2008;63(5):615–22. doi: 10.2143/AC.63.5.2033230.
  148. Morony S, Tintut J, Zhang Z, Cattley RC, Van G, Dwyer D, Stolina M, Kostenuik PJ, Demer LL. Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in IdIr (-/-) mice. Circulation. 2008;117(3):411–20. doi: 10.1161/CIRCULATIONAHA.107.707380.
  149. Özkök A, Caliskan Y, Sakaci T, Erten G, Karahan G, Ozel A, Unsal A, Yildiz A. Osteoprotegerin/RANKL axis and progression of coronary artery calcification in hemodialysis patients. Clin J Am Soc Nephrol. 2012;7(6):965–73. doi: 10.2215/CJN.11191111.
  150. Hyder JA, Allison MA, Wong N, Papa A, Lang TF, Sirlin C, Gapstur SM, Ouyang P, Carr JJ, Crigui MH. Association of coronary artery and aortic calcium with lumbar bone density. Am J Epidemiol. 2009;169(2):186–94. doi: 10.1093/aje/kwn303.
  151. Song SO, Park KW, Yoo SH, Koh WJ, Kang BS, Kim TH, Kim HJ, Cho YH, Cho DK, Kim SH. Association of coronary artery disease and osteoporotic vertebral fracture in Korean men and women. Endocrinol Metab. 2012;27(1): 39–44. doi: http://dx.doi.org/10.3803/EnM.2012.27.1.39.
  152. Naves M, Rodriguez-Garcia M, Diaz-Lopez JB, Gomez-Alonso C, Cannata-Andia JB. Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporos Int. 2008;19(8):1161–6. doi: 10.1007/s00198-007-0539-1.
  153. Sagalovsky S, Richter T. Link between serum osteoprotegerin, receptor activator nuclear kappa B ligand levels, coronary artery calcification and bone mineral density in women with postmenopausal osteoporosis. Experimental and Clinical Physiology and Biochemistry (Ukrainian). 2013;61(1):52–6.
  154. Demir P, Erdenen F, Aral H, Emre T, Kose S, Altunoglu E, Dolgun A, Inal BB, Turkmen A. Serum osteoprotegerin levels with cardiovascular risk factors in chronic kidney disease. J Clin Lab Anal [Internet]. 2016 Mar 17. doi: 10.1002/jcla.21941. Available from: http://onlinelibrary.wiley.com/doi/10.1002/jcla.21941/pdf.
  155. Samokhin AO, Lythgo PA, Gautier JY, Percival MD, Brömme D. Pharmacological inhibition of cathepsin S decreases atherosclerotic lesions in Apoe (-/-) mice. J Cardiovasc Pharmacol. 2010;56(1):98–105. doi: 10.1097/FJC.0b013e3181e23e10.
  156. Li X, Li Y, Jin J, Jin D, Cui L, Li X, Rei Y, Jiang H, Zhao G, Yang G, Zhu E, Nan Y, Cheng X. Increased serum cathepsin K in patients with coronary artery disease. Yonsei Med J. 2014;55(4):912–9. doi: 10.3349/ymj.2014.55.4.912.
  157. Guo J, Bot I, De Nooijer R, Hofman ST, Stroup GB, Biessen EA, Benson GM, Groot PH, Van Eck M, Van Berkel TJ. Leucocyte cathepsin K affects atherosclerotic lesion composition and bone mineral density in low-density apoprotein receptor deficient mice. Cardiovasc Res. 2009;81(2):278–85. doi: 10.1093/cvr/cvn311.
  158. Barascuk N, Skjöt-Arkil H, Register TC, Register TC, Larsen L, Byrjalsen I, Chrisiansen C, Karsdal MA. Human macrophage foam cells degrade atherosclerotic plaques through cathepsin K mediated processes. BMC Cardiovasc Disord. 2010;10(1):19. doi: 10.1186/1471-2261-10-19.
  159. Mackey LC, Homeister JW. Targeted molecular therapeutics for atherosclerosis. In: Wang H, Patterson C, editors. Atherosclerosis: Risks, Mechanisms and Therapie. 1st edition. New York: John Wiley Inc.; 2015. p. 533–44. doi: 10.1002/9781118828533.ch41.
  160. Sjöberg S, Shi GP. Cysteine protease cathepsins in atherosclerosis and abnormal aneurysm. Clin Rev Bone Miner Metab. 2011;9(2):138–47. doi: 10.1007/s12018-011-9098-2.
  161. Lee HT. The relationship between coronary artery calcification and bone mineral density in patient according to their metabolic syndrome status. Corean Circ J. 2011;41(2):76–82. doi: 10.4070/kcj.2011.41.2.76.
  162. Rennenberg RJ, Schurgers LJ, Kroon AA, Stehenwer CD. Arterial calcifications. J Cell Mol Med. 2010;14(9):2203–10. doi: 10.1111/j.1582-4934.2010.01139.x.
  163. Makarovic S, Macarovic Z, Steiner R, Mihaljevic I, Milas-Ahic J. Osteoprotegerin and vascular calcification: clinical and prognostic relevance. Coll Antropol. 2015;39(2):461–8.
  164. Montagnana M, Lippi G, Danese E, Guidi GC. The role of osteoprotegerin in cardiovascular disease. Ann Med. 2013;45(3):254–64. doi: 10.3109/07853890.2012.727019.
  165. Kato S. [Hormones and osteoporosis update. Estrogen and bone remodeling]. Clin Calcium. 2009;19(7):951–6. Japanese. doi: CliCa0907951956.
  166. Flore CE, Pennisi P, Pulvirenti I, Francucci CM. Bisphosphonates and atherosclerosis. J Endocrinol Invest. 2009;32(4 Suppl):38–43.
  167. Sugimoto T. [Anti-RANKL monoclonal antibody denosumab (AMG 162)]. Clin Calcium. 2011;21(1):46–53. Japanese. doi: CliCa11014651.
  168. Varenna M, Gatti D. [The role of RANKL-ligand inhibition in the treatment of postmenopausal osteoporosis]. Reumatismo. 2010;62(3):163–71. Italian. doi: http://dx.doi.org/10.4081/reumatismo.2010.163.
  169. Lewiecki EM. Clinical use of denosumab for the treatment for postmenopausal osteoporosis. Curr Med Res Opin. 2010;26(12):2807–12. doi: 10.1185/03007995.2010.533651.
  170. Moen MD, Keam SJ. Denosumab: a review of its use in the treatment of postmenopausal osteoporosis. Drugs Aging. 2011;28(1):63–82. doi: 10.2165/11203300-000000000-00000.
  171. Baron R, Ferrari S, Russel RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48(4):677–92. doi: 10.1016/j.bone.2010.11.020.
  172. Yuan LQ, Zhu JH, Wang HW, Liang QH, Xie H, Wu XP, Zhou H, Cui RR, Sheng ZF, Zhou HD, Zhu X, Liu GY, Liu YS, Liao EY. RANKL is a downstream mediator for insulin-induced osteoblastic differentiation of vascular smooth muscle cells. PLoS One. 2011;6(12):e29037. doi: 10.1371/journal.pone.0029037.
  173. Tintut Y, Abedin M, Cho J, Choe A, Lim J, Demer LL. Regulation of RANKL-induced osteoclastic differentiation by vascular cells. J Med Cell Cardiol. 2005;39(2):389–93. doi: 10.1016/j.yjmcc.2005.03.019.
  174. Samelson EJ, Miller PD, Christiansen C, Daizadeh NS, Grazette L, Anthony MS, Egbuna O, Wang A, Siddhanti SR, Cheung AM, Franchimont N, Kiel DP. RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J Bone Miner Res. 2014;29(2):450–7. doi: 10.1002/jbmr.2043.
  175. Helas S, Goettsch C, Schoppet M, Zeitz U, Hempel U, Morawietz H, Kostenuik PJ, Erben RG, Hofbauer LC. Inhibition of receptor activator of NF-kappaB ligand by denosumab attenuates vascular calcium deposition in mice. Am J Pathol. 2009;175(2):473–8. doi: 10.2353/ajpath.2009.080957.
  176. Lerman DA, Prasad S, Alotti N. Denosumab could be a potential inhibitor of vascular interstitial cells calcification in vitro. Int J Cardiovasc Res. 2016;5(1):1–7. doi: 10.4172/2324-8602.1000249.
  177. Dimitrow PP. Aortic stenosis: new pathophysiological mechanisms and future perspectives for pharmacological therapy. Pol Arch Med Wewn. 2016;126(3):121–3. doi: 10.20452/pamw.3335.
  178. University of Edinburg. Study investigating the effect of drugs used to tread osteoporosis on the progression of calcific aortic stenosis (SALTIRE II) [Internet]. 2014 [cited 2015 May 27]. Available from: https://clinicaltrials.gov/ct2/show/NOT02132026.
  179. Zhou JY, Chan L, Zhou SW. Omentin: linking metabolic syndrome and cardiovascular disease. Curr Vasc Pharmacol. 2014;12(1):136–43. doi: 10.2174/1570161112999140217095038.
  180. Duan X, Yuan M, Ma Y. Effect and mechanism of omentin on the differentiation of osteoblasts into calcifying vascular smooth muscle cells. Chinese Journal of Osteoporosis. 2015;21(3):269–74.
  181. Duan XY, Xie OL, Ma YL, Tang SY. Omentin inhibits osteoblastic differentiation of valcifying vascular smooth muscle cells through the PI3K/ Akt pathway. Amino Acids. 2011;41(5):1223–31. doi: 10.1007/s00726-010-0800-3.
  182. Xie H, Xie PL, Wu XP, Chen SM, Zhou HD, Yuan LQ, Sheng ZF, Tang SY, Luo XH, Liao EY. Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression. Cardiovasc Res. 2011;92(2):296–306. doi: 10.1093/cvr/cvr200.
  183. Hiromatsu-Ito M, Shibata R, Ohashi K, Uemura Y, Kanemura N, Kambara T, Enomoto T, Yuasa D, Matsuo K, Ito M, Hayakawa S, Ogawa H, Otaka N, Kihara S, Murohara T, Ouchi N. Omentin attenuates atherosclerotic lesion formation in apolipoprotein E-deficient mice. Cardiovasc Res. 2016;110(1):107–17. doi: 10.1093/cvr/cvv282.
  184. Stejskal D, Vaclavik J, Smekal A, Svobodova G, Richterova R, Svestak M. Omentin-1 levels in patients with premature coronary disease, metabolic syndrome and healthy controls. Short communication. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160(2):219–21. doi: 10.5507/bp.2016.019.
  185. Liu Y, Song CY, Wu SS, Liang QH, Yuan LQ, Liao EY. Novel adipokines and bone metabolism. Int J Endocrinol. 2013;2013:895045. doi: 10.1155/2013/895045.
  186. Bone HG, Dempster DW, Eisman JA, Greenspan SL, McClung RM, Nakamura T, Papapoulos S, Shin WJ, Rybuk-Felglin A, Santora AC, Verbruggen N, Leung AT, Lombardi A. Odanacatib fort he treatment of postmenopausal osteoporosis: development history and design and participant characteristic of LOFT, the long-term odanacatib fracture trial. Osteoporos Int. 2015;26(2):699–712. doi: 10.1007/s00198-014-2944-6.
  187. Bonnick S, DeVilliors T, Odio A, Palacios S, Chapurlat R, Da Silva C, Scott BB, Le Bailly De Tilleghem C, Leung AT, Gurner D. Effects of odanacatib on BMD and safety in the treatment of osteoporosis in postmenopausal women previously treated with alendronate: a randomized placebo-controlled trial. J Clin Endocrinol Metab. 2013;98(12):4727–35. doi: 10.1210/jc.2013-2020.
  188. Lin T, Wang C, Cai XZ, Zhao X, Shi MM, Ying ZM, Yuan FZ, Guo C, Yan SG. Comparison of clinical efficacy and safety between denosumab and alendronate in postmenopausal women with osteoporosis. Int J Clin Pract. 2012;66(4):399–408. doi: 10.1111/j.1742-1241.2011.02806.x.
  189. Silöos M, BenAissa M, Thatcher GR. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B. 2015;5(6):506–19. doi: 10.1016/j.apsb.2015.08.001.
  190. Podgorski I. Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem. 2009;1(1):21–34. doi: 10.4155/fmc.09.4.
  191. Persival MD, inventor. Cathepsin K inhibitors and atherosclerosis. United States patent US EP1841730A1. 2007 October 10.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Dolzhenko A., Richter T., Sagalovsky S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies