EXPRESSION PROFILES AND METHYLATION GENES IN CLEAR CELL RENAL CARCINOMA

Cover Page
  • Authors: Braga E.A.1,2,3, Zhinzhilo T.A.4,5, Kolpakov A.V.6,7, Mikhaylenko D.S.8,9,10, Kushlinskii N.E.11,12
  • Affiliations:
    1. Institute of General Pathology and Pathophysiology
    2. 8 Baltiyskaya ul., Moscow, 125315, Russian Federation Research Centre of Medical Genetics
    3. 1 Moskvorech'e ul., Moscow, 115478, Russian Federation
    4. Medical and Rehabilitation Center
    5. 3 Ivan'kovskoe shosse, Moscow, 125367, Russian Federation
    6. V.D. Babenko Tambov Regional Clinical Hospital
    7. 29 Moskovskaya ul., Tambov, 392000, Russian Federation
    8. Research Centre of Medical Genetics
    9. 1 Moskvorech'e ul., Moscow, 115478, Russian Federation N.A. Lopatkin Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Center
    10. 51/1 3-ya Parkovaya ul., Moscow, 105425, Russian Federation
    11. Moscow State University of Medicine and Dentistry named after A.I. Evdokimov
    12. 20–1 Delegatskaya ul., Moscow, 127473, Russian Federation
  • Issue: Vol 44, No 5 (2016)
  • Pages: 546-557
  • Section: REVIEW ARTICLE
  • URL: https://almclinmed.ru/jour/article/view/443
  • DOI: https://doi.org/10.18786/2072-0505-2016-44-5-546-557
  • ID: 443


Cite item

Full Text

Abstract

Renal cancer (RC) is a common malignancy of the genitourinary system. Clear cell renal cell carcinoma is the most common histological type of RC. In most cases diagnosis and prognosis of clear cell renal cell carcinoma are based on the results of instrumental tests, while search for novel molecular RC markers and their characterization remain relevant. Molecular genetic abnormalities accompanied with changes in gene expression underly the RC carcinogenesis; however, diagnostic panels of the expression markers of RC are still not widely used. This review represents the results of recent research in the area of gene expression markers of RC aimed to elaborate prognostic test systems. Application of the NotI-microarray methodology allowed for identification of many novel genes associated with RC pathogenesis. The relationship of alterations of expression level and methylation of chromosome 3 genes with RC progression and metastasis has been shown. Based on this data, a  diagnostic marker system for RC have been proposed with identification of expression and methylation profiles and novel markers, that is an urgent problem in modern urologic oncology.

About the authors

E. A. Braga

Institute of General Pathology and Pathophysiology; 8 Baltiyskaya ul., Moscow, 125315, Russian Federation
Research Centre of Medical Genetics; 1 Moskvorech'e ul., Moscow, 115478, Russian Federation

Author for correspondence.
Email: biochimia@mtu-net.ru
PhD, Doctor of Biol. Sci., Professor, Head of Laboratory of Genomics and Transcriptomics Russian Federation

T. A. Zhinzhilo

Medical and Rehabilitation Center; 3 Ivan'kovskoe shosse, Moscow, 125367, Russian Federation

Email: biochimia@mtu-net.ru
MD, Specialist in Clinical Laboratory Diagnostics Russian Federation

A. V. Kolpakov

V.D. Babenko Tambov Regional Clinical Hospital; 29 Moskovskaya ul., Tambov, 392000, Russian Federation

Email: biochimia@mtu-net.ru
MD, Head of Department of Urology Russian Federation

D. S. Mikhaylenko

Research Centre of Medical Genetics; 1 Moskvorech'e ul., Moscow, 115478, Russian Federation
N.A. Lopatkin Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Center; 51/1 3-ya Parkovaya ul., Moscow, 105425, Russian Federation

Email: biochimia@mtu-net.ru
MD, PhD, Leading Research Fellow, Department of Pathology Anatomy with the Molecular Genetic Group Russian Federation

N. E. Kushlinskii

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov; 20–1 Delegatskaya ul., Moscow, 127473, Russian Federation

Email: biochimia@mtu-net.ru
MD, PhD, Professor, Member-Correspondent of Russian Academy of Sciences, Head of Chair of Clinical Chemistry and Laboratory Diagnostics Russian Federation

References

  1. Каприн АД, Старинский ВВ, Петрова ГВ, ред. Злокачественные новообразования в Рос-сии в 2014 году (заболеваемость и смертность). М.: Издательство МНИОИ им. П.А. Герцена; 2016. 250 с.
  2. Linehan WM. Genetic basis of kidney cancer: role of genomics for the development of disease-based therapeutics. Genome Res. 2012;22(11): 2089–100. doi: 10.1101/ gr.131110.111.
  3. Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras. 2015;48(3): 166–74. doi: 10.1590/0100-3984.2013.1927.
  4. Williamson SR, Gupta NS, Eble JN, Rogers CG, Michalowski S, Zhang S, Wang M, Grignon DJ, Cheng L. Clear cell renal cell carcinoma with borderline features of clear cell papillary renal cell carcinoma: combined morphologic, immunohistochemical, and cytogenetic analysis. Am J Surg Pathol. 2015;39(11): 1502–10. doi: 10.1097/PAS.0000000000000514.
  5. Bata P, Tarnoki DL, Tarnoki AD, Novak PK, Gyebnar J, Kekesi D, Szendroi A, Fejer B, Szasz AM, Nyirady P, Karlinger K, Berczi V. Transitional cell and clear cell renal carcinoma: differentiation of distinct histological types with multiphase CT. Acta Radiol. 2014;55(9): 1112–9. doi: 10.1177/0284185113510493.
  6. Delahunt B, Cheville JC, Martignoni G, Hum-phrey PA, Magi-Galluzzi C, McKenney J, Egevad L, Algaba F, Moch H, Grignon DJ, Montironi R, Srigley JR; Members of the ISUP Renal Tumor Panel. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol. 2013;37(10): 1490–504. doi: 10.1097/PAS.0b013e318299f0fb.
  7. Strobel O, Büchler MW. Pancreatic metastases from tumors in the urogenital tract. Gastrointest Tumors. 2015;2(2): 75–82. doi: 10.1159/000431045.
  8. Truong LD, Shen SS. Immunohistochemical diagnosis of renal neoplasms. Arch Pathol Lab Med. 2011;135(1): 92–109. doi: 10.1043/2010-0478-RAR.1.
  9. Bonsib SM, Bhalodia A. Renal neoplasms: an update on immunohistochemical and histochemical features. Connection. 2010;14:178–85.
  10. Ross H, Martignoni G, Argani P. Renal cell carcinoma with clear cell and papillary features. Arch Pathol Lab Med. 2012;136(4): 391–9. doi: 10.5858/arpa.2011-0479-RA.
  11. Gomy I, Silva WA Jr. Molecular pathogenesis of renal cell carcinoma: a review. In: Amato R, editor. Emerging research and treatments in renal cell carcinoma. Rijeka: InTech; 2012 [Internet]. Available from: http://www.intechopen.com/ books/emerging-research-and-treatments-in-renal-cell-carcinoma/molecular-pathogenesis-of-renal-cell-carcinoma-a-review.
  12. Cho E, Adami HO, Lindblad P. Epidemiology of renal cell cancer. Hematol Oncol Clin North Am. 2011;25(4): 651–65. doi: 10.1016/j. hoc.2011.04.002.
  13. Kapur P, Christie A, Raman JD, Then MT, Nuhn P, Buchner A, Bastian P, Seitz C, Shariat SF, Bensalah K, Rioux-Leclercq N, Xie XJ, Lotan Y, Margulis V, Brugarolas J. BAP1 immunohisto-chemistry predicts outcomes in a multi-institutional cohort with clear cell renal cell carcinoma. J Urol. 2014;191(3): 603–10. doi: 10.1016/j. juro.2013.09.041.
  14. Diamond E, Riches J, Faltas B, Tagawa ST, Nanus DM. Immunologics and chemotherapeutics for renal cell carcinoma. Semin Inter-vent Radiol. 2014;31(1): 91–7. doi: 10.1055/s-0033-1363848.
  15. Miyazaki A, Miyake H, Fujisawa M. Molecular mechanism mediating cytotoxic activity of axitinib in sunitinib-resistant human renal cell carcinoma cells. Clin Transl Oncol. 2016;18(9): 893–900. doi: 10.1007/s12094-015-1457-x.
  16. Azam F, Mehta S, Harris AL. Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer. 2010;46(8): 1323–32. doi: 10.1016/j. ejca.2010.02.020.
  17. Qayyum T, McArdle P, Orange C, Seywright M, Horgan P, Oades G, Aitchison M, Edwards J. Reclassification of the Fuhrman grading system in renal cell carcinoma – does it make a difference? Springerplus. 2013;2:378. doi: 10.1186/2193-1801-2-378.
  18. Thibodeau BJ, Fulton M, Fortier LE, Geddes TJ, Pruetz BL, Ahmed S, Banes-Berceli A, Zhang PL, Wilson GD, Hafron J. Characterization of clear cell renal cell carcinoma by gene expression profiling. Urol Oncol. 2016;34(4): 168.e1–9. doi: 10.1016/j.urolonc.2015.11.001.
  19. Dall'Oglio MF, Coelho RF, Leite KR, Sousa-Canavez JM, Oliveira PS, Srougi M. Gene expression profile of renal cell carcinoma clear cell type. Int Braz J Urol. 2010;36(4): 410–8. doi: 10.1590/ S1677-55382010000400004.
  20. He H, Magi-Galluzzi C. Epithelial-to-mesenchymal transition in renal neoplasms. Adv Anat Pathol. 2014;21(3): 174–80. doi: 10.1097/ PAP.0000000000000018.
  21. Piva F, Giulietti M, Santoni M, Occhipinti G, Scarpelli M, Lopez-Beltran A, Cheng L, Principato G, Montironi R. Epithelial to mesenchymal transition in renal cell carcinoma: implications for cancer therapy. Mol Diagn Ther. 2016;20(2): 111–7. doi: 10.1007/s40291-016-0192-5.
  22. Tun HW, Marlow LA, von Roemeling CA, Cooper SJ, Kreinest P, Wu K, Luxon BA, Sinha M, Anastasiadis PZ, Copland JA. Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS One. 2010;5(5):e10696. doi: 10.1371/journal.pone.0010696.
  23. Luong-Player A, Liu H, Wang HL, Lin F. Immunohistochemical reevaluation of carbonic an-hydrase IX (CA IX) expression in tumors and normal tissues. Am J Clin Pathol. 2014;141(2): 219–25. doi: 10.1309/AJCPVJDS28KNYZLD.
  24. Mahon BP, Pinard MA, McKenna R. Targeting carbonic anhydrase IX activity and expression. Molecules. 2015;20(2): 2323–48. doi: 10.3390/ molecules20022323.
  25. Tostain J, Li G, Gentil-Perret A, Gigante M. Carbonic anhydrase 9 in clear cell renal cell carcinoma: a marker for diagnosis, prognosis and treatment. Eur J Cancer. 2010;46(18): 3141–8. doi: 10.1016/j.ejca.2010.07.020.
  26. Donato DP, Johnson MT, Yang XJ, Zynger DL. Expression of carbonic anhydrase IX in genitourinary and adrenal tumours. Histopathology. 2011;59(6): 1229–39. doi: 10.1111/j.1365-2559.2011.04074.x.
  27. Gieling RG, Williams KJ. Carbonic anhydrase IX as a target for metastatic disease. Bioorg Med Chem. 2013;21(6): 1470–6. doi: 10.1016/j. bmc.2012.09.062.
  28. Takacova M, Bartosova M, Skvarkova L, Zatovicova M, Vidlickova I, Csaderova L, Barathova M, Breza J Jr, Bujdak P, Pastorek J, Breza J Sr, Pastorekova S. Carbonic anhydrase IX is a clinically significant tissue and serum biomarker associated with renal cell carcinoma. Oncol Lett. 2013;5(1): 191–7. doi: 10.3892/ol.2012.1001.
  29. Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res. 2012;72(8): 1909–14. doi: 10.1158/0008-5472.CAN-11-3406.
  30. Zhao W, Tian B, Wu C, Peng Y, Wang H, Gu WL, Gao FH. DOG1, cyclin D1, CK7, CD117 and vimentin are useful immunohistochemical markers in distinguishing chromophobe renal cell carcinoma from clear cell renal cell carcinoma and renal oncocytoma. Pathol Res Pract. 2015;211(4): 303–7. doi: 10.1016/j. prp.2014.12.014.
  31. Chen D, Gassenmaier M, Maruschke M, Riesen-berg R, Pohla H, Stief CG, Zimmermann W, Buchner A. Expression and prognostic significance of a comprehensive epithelial-mesenchymal transition gene set in renal cell carcinoma. J Urol. 2014;191(2): 479–86. doi: 10.1016/j. juro.2013.08.052.
  32. Jiang T, Zhuang J, Duan H, Luo Y, Zeng Q, Fan K, Yan H, Lu D, Ye Z, Hao J, Feng J, Yang D, Yan X. CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis. Blood. 2012;120(11): 2330–9. doi: 10.1182/blood-2012-01-406108.
  33. Vohr HW, editor. Encyclopedia of immunotoxicology. Berlin: Springer; 2015. p. 151–8.
  34. Feng G, Fang F, Liu C, Zhang F, Huang H, Pu C. CD146 gene expression in clear cell renal cell carcinoma: a potential marker for prediction of early recurrence after nephrectomy. Int Urol Nephrol. 2012;44(6): 1663–9. doi: 10.1007/ s11255-012-0255-4.
  35. Wragg JW, Finnity JP, Anderson JA, Ferguson HJ, Porfiri E, Bhatt RI, Murray PG, Heath VL, Bicknell R. MCAM and LAMA4 are highly enriched in tumor blood vessels of renal cell carcinoma and predict patient outcome. Cancer Res. 2016;76(8): 2314–26. doi: 10.1158/0008-5472. CAN-15-1364.
  36. Shibuya M. Involvement of Flt-1 (VEGF receptor-1) in cancer and preeclampsia. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87(4): 167–78. doi: http://doi.org/10.2183/pjab.87.167.
  37. Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153(1): 13–9. doi: 10.1093/jb/mvs136.
  38. Behbahani TE, Thierse C, Baumann C, Holl D, Bastian PJ, von Ruecker A, Müller SC, Ellinger J, Hauser S. Tyrosine kinase expression profile in clear cell renal cell carcinoma. World J Urol. 2012;30(4): 559–65. doi: 10.1007/s00345-011-0767-z.
  39. Lambrechts D, Claes B, Delmar P, Reumers J, Mazzone M, Yesilyurt BT, Devlieger R, Verslype C, Tejpar S, Wildiers H, de Haas S, Carmeliet P, Scherer SJ, Van Cutsem E. VEGF pathway genetic variants as biomarkers of treatment outcome with bevacizumab: an analysis of data from the AViTA and AVOREN randomised trials. Lancet Oncol. 2012;13(7): 724–33. doi: 10.1016/S1470-2045(12)70231-0.
  40. Dornbusch J, Walter M, Gottschalk A, Obaje A, Junker K, Ohlmann CH, Meinhardt M, Zacharis A, Zastrow S, Schoffer O, Grimm MO, Klug SJ, Wirth MP, Fuessel S. Evaluation of polymorphisms in angiogenesis-related genes as predictive and prognostic markers for sunitinib-treated metastatic renal cell carcinoma patients. J Cancer Res Clin Oncol. 2016;142(6): 1171–82. doi: 10.1007/s00432-016-2137-0.
  41. del Puerto-Nevado L, Rojo F, Zazo S, Car-amés C, Rubio G, Vega R, Chamizo C, Casa-do V, Martínez-Useros J, Rincón R, Rodríguez-Remírez M, Borrero-Palacios A, Cristóbal I, Madoz-Gúrpide J, Aguilera O, García-Foncillas J. Active angiogenesis in metastatic renal cell carcinoma predicts clinical benefit to sunitinib-based therapy. Br J Cancer. 2014;110(11): 2700–7. doi: 10.1038/bjc.2014.225.
  42. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4): 683–92. doi: 10.1016/j. cell.2007.01.029.
  43. Kashuba VI, Gizatullin RZ, Protopopov AI, Li J, Vorobieva NV, Fedorova L, Zabarovska VI, Mu-ravenko OV, Kost-Alimova M, Domninsky DA, Kiss C, Allikmets R, Zakharyev VM, Braga EA, Sumegi J, Lerman M, Wahlestedt C, Zelenin AV, Sheer D, Winberg G, Grafodatsky A, Kisselev LL, Klein G, Zabarovsky ER. Analysis of NotI linking clones isolated from human chromosome 3 specific libraries. Gene. 1999;239(2): 259–71. doi: http://dx.doi.org/10.1016/S0378-1119(99)00411-4.
  44. Li J, Protopopov A, Wang F, Senchenko V, Petushkov V, Vorontsova O, Petrenko L, Zabarovska V, Muravenko O, Braga E, Kisselev L, Lerman MI, Kashuba V, Klein G, Ernberg I, Wahlestedt C, Zabarovsky ER. NotI subtraction and NotI-specific microarrays to detect copy number and methylation changes in whole genomes. Proc Natl Acad Sci U S A. 2002;99(16): 10724–9. doi: 10.1073/pnas.132271699.
  45. Zabarovsky ER, Senchenko V, Loginov V. Positional cloning of tumor suppressor genes from 3p21.3 involved in major human cancers. In: Columbus F, editor. Horizons in cancer research. New York: Nova Science Publishers, Inc.; 2011. Vol. 42. N 4. p. 103–27.
  46. Dmitriev AA, Kashuba VI, Haraldson K, Senchenko VN, Pavlova TV, Kudryavtseva AV, Anedchenko EA, Krasnov GS, Pronina IV, Loginov VI, Kondratieva TT, Kazubskaya TP, Braga EA, Yenamandra SP, Ignatjev I, Ernberg I, Klein G, Ler-man MI, Zabarovsky ER. Genetic and epigenetic analysis of non-small cell lung cancer with No-tI-microarrays. Epigenetics. 2012;7(5): 502–13. doi: 10.4161/epi.19801.
  47. Kashuba V, Dmitriev AA, Krasnov GS, Pavlova T, Ignatjev I, Gordiyuk VV, Gerashchenko AV, Bra-ga EA, Yenamandra SP, Lerman M, Senchenko VN, Zabarovsky E. NotI microarrays: novel epigenetic markers for early detection and prognosis of high grade serous ovarian cancer. Int J Mol Sci. 2012;13(10): 13352–77. doi: 10.3390/ijms131013352.
  48. Senchenko VN, Kisseljova NP, Ivanova TA, Dmitriev AA, Krasnov GS, Kudryavtseva AV, Panasenko GV, Tsitrin EB, Lerman MI, Kisseljov FL, Kashuba VI, Zabarovsky ER. Novel tumor suppressor candidates on chromosome 3 revealed by No-tI-microarrays in cervical cancer. Epigenetics. 2013;8(4): 409–20. doi: 10.4161/epi.24233.
  49. Zabarovsky ER, Braga EA, Loginov V. Novel methylation-dependent markers/tumor suppressor genes involved in the development of renal cell cancer. In: Columbus F, editor. Horizons in cancer research. New York: Nova Science Publishers, Inc.; 2011. Vol. 42. N 5. p. 129–52.
  50. Dmitriev AA, Rudenko EE, Kudryavtseva AV, Krasnov GS, Gordiyuk VV, Melnikova NV, Stakhovsky EO, Kononenko OA, Pavlova LS, Kondratieva TT, Alekseev BY, Braga EA, Senchenko VN, Kashuba VI. Epigenetic alterations of chromosome 3 revealed by No-tI-microarrays in clear cell renal cell carcinoma. Biomed Res Int. 2014;2014:735292. doi: 10.1155/2014/735292.
  51. Брага ЭА, Ходырев ДС, Логинов ВИ, Пронина ИВ, Сенченко ВН, Дмитриев АА, Кубатиев АА, Кушлинский НЕ. Роль метилирования в регуляции экспрессии генов хромосомы 3 и генов микроРНК при светлоклеточном почечноклеточном раке. Генетика. 2015;51(6): 668–84. doi: 10.7868/S0016675815050021.
  52. Gerashchenko GV, Bogatyrova OO, Rudenko EE, Kondratov AG, Gordiyuk VV, Zgonnyk YM, Vozianov OF, Pavlova TV, Zabarovsky ER, Ryn-ditch AV, Kashuba VI. Genetic and epigenetic changes of NKIRAS1 gene in human renal cell carcinomas. Exp Oncol. 2010;32(2): 71–5.
  53. Rydzanicz M, Wrzesiński T, Bluyssen HA, We-soły J. Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications. Cancer Lett. 2013;341(2): 111–26. doi: 10.1016/j.canlet.2013.08.006.
  54. Пронина ИВ. Изменение уровней экспрессии генов из критичных районов хромосомы 3 человека в эпителиальных опухолях разных локализаций. Дис. … канд. биол. наук. М.: ФГУП «ГосНИИгенетика»; 2010. 150 с.
  55. Haraldson K, Kashuba VI, Dmitriev AA, Senchenko VN, Kudryavtseva AV, Pavlova TV, Braga EA, Pronina IV, Kondratov AG, Rynditch AV, Ler-man MI, Zabarovsky ER. LRRC3B gene is frequently epigenetically inactivated in several epithelial malignancies and inhibits cell growth and replication. Biochimie. 2012;94(5): 1151–7. doi: 10.1016/j.biochi.2012.01.019.
  56. Singh RB, Amare Kadam PS. Investigation of tumor suppressor genes apart from VHL on 3p by deletion mapping in sporadic clear cell renal cell carcinoma (cRCC). Urol Oncol. 2013;31(7): 1333–42. doi: 10.1016/j.urolonc.2011.08.012.
  57. Gatto F, Nookaew I, Nielsen J. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc Natl Acad Sci U S A. 2014;111(9):E866–75. doi: 10.1073/pnas.1319196111.
  58. Gordiyuk VV, Kondratov AG, Gerashchenko GV, Kashuba VI. Novel epigenetic markers of early epithelial tumor growth and prognosis. Bio-polym Cell. 2013;29(3): 215–20. Available from: http://dx.doi.org/10.7124/bc.00081B.
  59. Jain S, Wojdacz TK, Su YH. Challenges for the application of DNA methylation biomarkers in molecular diagnostic testing for cancer. Expert Rev Mol Diagn. 2013;13(3): 283–94. doi: 10.1586/erm.13.9.
  60. Jerónimo C, Henrique R. Epigenetic biomarkers in urological tumors: a systematic review. Cancer Lett. 2014;342(2): 264–74. doi: 10.1016/j.can-let.2011.12.026.
  61. Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, Belinsky SA. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 2000;60(21): 5954–8.
  62. Mikeska T, Bock C, Do H, Dobrovic A. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Rev Mol Diagn. 2012;12(5): 473–87. doi: 10.1586/erm.12.45.
  63. Hoque MO, Begum S, Topaloglu O, Jeronimo C, Mambo E, Westra WH, Califano JA, Sidransky D. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res. 2004;64(15): 5511–7.
  64. Gonzalgo ML, Yegnasubramanian S, Yan G, Rogers CG, Nicol TL, Nelson WG, Pavlovich CP. Molecular profiling and classification of sporadic renal cell carcinoma by quantitative methylation analysis. Clin Cancer Res. 2004;10(21): 7276–83.
  65. Ibanez de Caceres I, Dulaimi E, Hoffman AM, Al-Saleem T, Uzzo RG, Cairns P. Identification of novel target genes by an epigenetic reactivation screen of renal cancer. Cancer Res. 2006;66(10): 5021–8. doi: 10.1158/0008-5472. CAN-05-3365.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Braga E.A., Zhinzhilo T.A., Kolpakov A.V., Mikhaylenko D.S., Kushlinskii N.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies