Continuous glucose monitoring in children with glycogenosis

Cover Page


Cite item

Full Text

Abstract

Rationale: Glycogen storage diseases (GSD, glycogenosis) are a group of hereditary disorders of carbohydrate metabolism that is characterized by excess glycogen accumulation in various organs and tissues due to deficiency or absence of glycogen-splitting enzymes. GSD diagnostics requires an assessment of the patient's health status, severity and frequency of hypoglycemias, as well as the choice of a strategy for nutritional support to prevent hypoglycemia.

Aim: To assess efficacy of continuous glucose monitoring (CGM) as a  new method to diagnose hypoglycemia in children with hepatic types of GSD and the role of this assessment method in personalization of nutritional regimen in these disorders.

Materials and methods: The study included 51 child with confirmed diagnosis of GSD at the age of 6.9 ± 0.7  years, of them 36  boys and 15  girls. Thirty three percent of patients had GSD type I, 22% – type III, 45% – types VI and IX. All patients had their glycemic levels measured as glycemic profiles and oral glucose tolerance test (OGTT), as well as by means of real-time CGM. The results were analyzed both in the whole group of patients and in the groups with various GSD types.

Results: Measurement of glycemic profiles in children with GSD at daytime did not detect any significant abnormalities. During OGTT, more rapid decline of glucose levels was seen in younger kids and in patients with GSD type I; however, the differences were not statistically significant (11  patients (65%  of cases) had the lowest glucose levels at 180  minutes of the test: 3.1 ± 0.3 mmol/L, p > 0.05). Fasting hypoglycemia in the OGTT was found in 4  (24%) children with GSD type I  and in 3  (13%) children with GSD types VI and IX. Hypoglycemia at the end of the test was seen in 13 (76%) patients with GSD type I, in 3 (27%) with type III, and in 12 (55%) with types VI and IX. CGM showed hyperglycemia (10.2 ± 0.3 mmol/L) for 1 to 1.5 hours after a meal. Hypoglycemic episodes were registered at night time in 48 (94.1%) of children indicating the need for additional night feeding. Maximal total duration of low glucose levels was found in type  I  of the disease (10.2 ± 2.4  hours). Analysis of CGM results depending on GSD type showed that despite comparable glucose levels, more significant abnormalities are found in GSD type I (the proportion of hyperglycemic periods was 10.2 ± 2.3%, their duration 6.9 ± 1.8  hours; the proportion of hypoglycemic periods was 13.5 ± 2.6%, their duration 10.2 ± 2.4 hours, p < 0.05).

Conclusion: The results obtained indicate the necessity to use CGM in all GSD patients to diagnose and prevent hypoglycemia that would be the basis to elaborate individual nutritional recommendations.

About the authors

T. V. Strokova

Federal Research Centre of Nutrition, Biotechnology and Food Safety;
Pirogov Russian National Research Medical University

Email: fake@neicon.ru

MD, PhD, Professor of Russian Academy of Sciences, Head of the Department of Pediatric Gastroenterology, Hepatology and Nutrition, 2/14 Ust'inskiy proezd, Moscow, 109240;

Head of the Chair of Gastroenterology and Nutrition, 1 Ostrovityanova ul., Moscow, 117997

Russian Federation

I. V. Prokhorova 

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Author for correspondence.
Email: irinav_m@bk.ru

MD, Postgraduate Student,

21 Kashirskoe shosse, Moscow, 115446

Russian Federation

A. G. Surkov 

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: fake@neicon.ru

MD, PhD, Leading Research Fellow, Department of Pediatric Gastroenterology, Hepatology and Nutrition,

2/14 Ust'inskiy proezd, Moscow, 109240

Russian Federation

M. E. Bagaeva

Federal Research Centre of Nutrition, Biotechnology and Food Safety;
Pirogov Russian National Research Medical University

Email: fake@neicon.ru

MD, PhD, Senior Research Fellow, Department of Pediatric Gastroenterology, Hepatology and Nutrition, 2/14 Ust'inskiy proezd, Moscow, 109240;

Assistant, Chair of Gastroenterology and Nutrition, 1 Ostrovityanova ul., Moscow, 117997

Russian Federation

E. V. Pavlovskaya 

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: fake@neicon.ru

MD, PhD, Senior Research Fellow, Department of Pediatric Gastroenterology, Hepatology and Nutrition,

2/14 Ust'inskiy proezd, Moscow, 109240

Russian Federation

N. N. Taran 

Federal Research Centre of Nutrition, Biotechnology and Food Safety;
Pirogov Russian National Research Medical University

Email: fake@neicon.ru

MD, PhD, Senior Research Fellow, Department of Pediatric Gastroenterology, Hepatology and Nutrition, 2/14 Ust'inskiy proezd, Moscow, 109240;

Assistant, Chair of Gastroenterology and Nutrition, 1 Ostrovityanova ul., Moscow, 117997

Russian Federation

A. I. Zubovich 

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: fake@neicon.ru

MD, PhD, Research Fellow, Department of Pediatric Gastroenterology, Hepatology and Nutrition,

2/14 Ust'inskiy proezd, Moscow, 109240

Russian Federation

References

  1. Александрова ЛА, Михайлова ИА, Томсон ВВ. Специальные вопросы биологии человека: учебное пособие. СПб.: СПбГУ ИТМО; 2009. 99 с.
  2. Chen YT. Glycogen storage diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Vogelstein B, editors. The metabolic and molecular bases of inherited disease. 8th edition. New York: McGraw-Hill; 2001. p. 1521–51.
  3. Matern D, Seydewitz HH, Bali D, Lang C, Chen YT. Glycogen storage disease type I: diagnosis and phenotype/genotype correlation. Eur J Pediatr. 2002;161 Suppl 1:S10–9. doi: 10.1007/s00431-002-0998-5.
  4. Chen YT. Glycogen storage disease and other inherited disorders of carbohydrate metabolism. In: Kasper DL, Braunwald E, Fauci A, Hauser S, Jameson J, editors. Harrison's principles of internal medicine. 17th edition. New York: McGraw-Hill; 2005. p. 2319–23.
  5. Chen YT, Bali DS. Glycogen storage diseases. In: Fuchs J, Podda M, editors. Encyclopedia of diagnostic genomics and proteomics. New York: Marcel Dekker Inc.; 2004. p. 543–9.
  6. Ozen H. Glycogen storage diseases: new perspectives. World J Gastroenterol. 2007;13(18): 2541–53. doi: 10.3748/wjg.v13.i18.2541.
  7. Краснопольская КД. Наследственные болезни обмена веществ. Справочное пособие для врачей. М.: РОО «Центр социальной адаптации и реабилитации детей «Фохат»; 2005. 364 с.
  8. Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P. Glucose-6-phosphatase deficiency. Orphanet J. Rare Dis. 2011;6:27. doi: 10.1186/1750-1172-6-27.
  9. Shen J, Bao Y, Chen YT. A nonsense mutation due to a single base insertion in the 3'-coding region of glycogen debranching enzyme gene associated with a severe phenotype in a patient with glycogen storage disease type IIIa. Hum Mutat. 1997;9(1):37–40. doi: 10.1002/(SICI) 1098-1004 (1997)9:1<37::AID-HUMU6>3.0.CO;2-M.
  10. Shen J, Bao Y, Liu HM, Lee P, Leonard JV, Chen YT. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J Clin Invest. 1996;98(2):352–7. doi: 10.1172/JCI118799.
  11. Shen J, Liu HM, Bao Y, Chen YT. Polymorphic markers of the glycogen debranching enzyme gene allowing linkage analysis in families with glycogen storage disease type III. J Med Genet. 1997;34(1):34–8.
  12. Endo Y, Horinishi A, Vorgerd M, Aoyama Y, Ebara T, Murase T, Odawara M, Podskarbi T, Shin YS, Okubo M. Molecular analysis of the AGL gene: heterogeneity of mutations in patients with glycogen storage disease type III from Germany, Canada, Afghanistan, Iran, and Turkey. J Hum Genet. 2006;51(11):958–63. doi: 10.1007/s10038-006-0045-x.
  13. Burwinkel B, Bakker HD, Herschkovitz E, Moses SW, Shin YS, Kilimann MW. Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI. Am J Hum Genet. 1998;62(4):785–91. doi: http://dx.doi.org/10.1086/301790.
  14. Chang S, Rosenberg MJ, Morton H, Francomano CA, Biesecker LG. Identification of a mutation in liver glycogen phosphorylase in glycogen storage disease type VI. Hum Mol Genet. 1998;7(5):865–70. doi: 10.1093/hmg/7.5.865.
  15. Hendrickx J, Willems PJ. Genetic deficiencies of the glycogen phosphorylase system. Hum Genet. 1996;97:551–6. doi: 10.1007/BF02281858.
  16. Van den Berg IE, Berger R. Phosphorylase b kinase deficiency in man: a review. J Inherit Metab Dis. 1990;13(4):442–51.
  17. Phillip M, Danne T, Shalitin S, Buckingham B, Laffel L, Tamborlane W, Battelino T; Consensus Forum Participants. Use of continuous glucose monitoring in children and adolescents. Pediatr Diabetes. 2012;13(3):215–28. doi: 10.1111/j.1399-5448.2011.00849.x.
  18. Филиппов ЮИ. Непрерывное мониторирование концентрации глюкозы крови в практике эндокринолога. Ожирение и метаболизм. 2012;9(4):15–22. doi: http://dx.doi.org/10.14341/2071-8713-5124.
  19. Тарасов ЮВ, Филиппов ЮИ, Борисова ЕА, Федорова ЕА, Майоров АЮ, Шестакова МВ. Технологии непрерывного мониторирования глюкозы: успехи и перспективы. Проблемы эндокринологии. 2015;61(4): 54–72. doi: http://dx.doi.org/10.14341/probl201561454-72.
  20. Wolfsdorf JI, Weinstein DA. Glycogen storage diseases. Rev Endocr Metab Disord. 2003;4(1): 95–102.
  21. Chou JY, Matern D, Mansfield BC, Chen YT. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr Mol Med. 2002;2(2):121–43. doi: 10.2174/1566524024605798.
  22. Варначева ЛН, Шабунина ЕИ, Лаврова АЕ, Коркоташвили ЛВ, Сазанова НЕ, Абрамов СА, Дмитриева ГВ, Галова ЕА, Борисова ЕЮ. Метаболические заболевания печени у детей, диагностика и лечение. Медицинский альманах. 2010;(4):211–4.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Strokova T.V., Prokhorova  I.V., Surkov  A.G., Bagaeva M.E., Pavlovskaya  E.V., Taran  N.N., Zubovich  A.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies