Analysis of luminescence in turbid biological media

Cover Page


Cite item

Full Text

Abstract

Background: Quantitative luminescent analysis is widely used in biology, laboratory diagnostics and clinical medicine to study objects at various levels. However, the existing simplified algorithms for calculation of the luminophore concentration in diluted linear solutions cannot be applied to the turbid media with strong light scattering, which include the majority of living biological tissues. Today, the development of luminescence analysis in medicine goes towards the creation of non-destructive and non-invasive methods of in vivo monitoring. Therefore, the urgent question is about a formulation of the research purpose and the development of algorithms to compute the luminophore concentration based on the luminescence spectra recorded in the turbid media. Objective: To formulate and justify the tasks of elaboration of the algorithms to compute the luminophore concentration based on the luminescence spectra recorded under conditions of the optically turbid media. Materials and methods: We looked upon the physico-mathematical simulation of the process of formation of the induced fluorescence emission in the light-scattering medium based on the modified 2-flux Kubelka-Munch model. We conducted a series of laboratory experiments with macro-homogenous light-scattering model media to determine characteristics of the dependence of the fluorescence intensity detected from the surface of an optically turbid biological medium upon the factor of light scattering and the concentration of the fluorophore in the medium. Results: Both theoretical and experimental results demonstrate complex nonlinear dependence of the fluorescence intensity detected upon the optical properties and a  concentration of a  fluorophore in the turbid media. This dependence is very different from the known linear  C.  Parker's solution for transparent media, which makes it impossible to use it in the optically turbid media. Conclusion: Further studies searching a  closed-form analytical solution of the inverse optical problem for light-scattering and fluorescent media are necessary to calculate the luminophore concentration in a light-scattering media based on the recorded luminescence spectra.

About the authors

I. A. Guseva

Moscow Regional Research and Clinical Institute (MONIKI);
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Author for correspondence.
Email: gusevairinaand@gmail.com

Guseva Irina A. – Technicist, Laboratory of Medical and Physics Research, MONIKI; Postgraduate Student, Faculty of Experimental and Theoretical Physics,  MEPhI 

61/2–9 Shchepkina ul., Moscow, 129110

Russian Federation

D. A. Rogatkin

Moscow Regional Research and Clinical Institute (MONIKI);
Research & Development Center EOS-Medica Ltd

Email: fake@neicon.ru

Rogatkin Dmitriy A. – PhD (in Engineering), Head of Laboratory of Medical and Physics Research, MONIKI; Director of the Research Programs and Projects, EOS-Medica Ltd

Russian Federation

E. S. Buvalaya

Moscow Regional Research and Clinical Institute (MONIKI);
Lomonosov Moscow State University

Email: fake@neicon.ru

Buvalaya Ekaterina S. – Laboratory Assistant, Laboratory of Medical and Physics Research, MONIKI; Master of Faculty of Physics, MSU

Russian Federation

References

  1. Гладков АА. Люминесцентный анализ в медицине. Кишинев: КГУ; 1958. 389 с.
  2. Lakowicz JR. Principles of fluorescence spectroscopy. New York: Plenum Press; 1983. 488 p.
  3. Udenfriend S. Fluorescence assay in biology and medicine. New York, London: Academic Press; 1962. 517 p.
  4. Рогаткин ДА. Физические основы лазерной клинической флюоресцентной спектроскопии in vivo. Медицинская физика. 2014;(4): 78–96.
  5. Шмидт В. Оптическая спектроскопия для химиков и биологов. М.: Техносфера; 2007. 368 с.
  6. Siraj N, El-Zahab B, Hamdan S, Karam TE, Haber LH, Li M, Fakayode SO, Das S, Valle B, Strongin RM, Patonay G, Sintim HO, Baker GA, Powe A, Lowry M, Karolin JO, Geddes CD, Warner IM. Fluorescence, phosphorescence, and chemiluminescence. Anal Chem. 2016;88(1): 170–202. doi: 10.1021/acs.analchem.5b04109.
  7. Mycek MA, Pogue BW, editors. Handbook of biomedical fluorescence. New York: Marcel Dekker Inc.; 2003. 665 p.
  8. Rogatkin D, Shumskiy V, Tereshenko S, Polyakov P. Laser-based non-invasive spectrophotometry – an overview of possible medical applications. Photonics & Lasers in Medicine. 2013;2(3):225–40. doi: 10.1515/plm-2013-0010.
  9. Smirnova OD, Rogatkin DA, Litvinova KS. Collagen as in vivo quantitative fluorescent biomarkers of abnormal tissue changes. J Innov Opt Health Sci. 2012;(5):250010. doi: http://dx.doi.org/10.1142/S1793545812500101.
  10. Rogatkin DA, Tereschenko SG, Lapaeva LG, Gorenkov RV. Complex therapeutic-diagnostic endoscopy with laser irradiation and in-Situ spectrophotometry of erosive-ulcerative impairments of upper part of the gastrointestinal tract. Proc. SPIE 4613. Optical Biopsy IV; 286 (May 7, 2002). doi: 10.1117/12.465257.
  11. Sunar U, Rohrbach DJ, Morgan J, Zeitouni N, Henderson BW. Quantification of PpIX concentration in basal cell carcinoma and squamous cell carcinoma models using spatial frequency domain imaging. Biomed Opt Express. 2013;4(4):531–7. doi: 10.1364/BOE.4.000531.
  12. Rogatkin D, Guseva I, Lapaeva L. Nonlinear behavior of the autofluorescence intensity on the surface of light-scattering biotissues and its theoretical proof. J Fluoresc. 2015;25(4): 917–24. doi: 10.1007/s10895-015-1572-7.
  13. Parker CA. Photoluminescence of solutions. Amsterdam: Elsevier; 1968. 510 p.
  14. Rogatkin DA, Sokolovski SG, Fedorova KA, Stewart NA, Sidorov VV, Rafailov EU. Basic principles of design and functioning of multifunctional laser diagnostic system for non-invasive medical spectrophotometry. Proc. SPIE 7890. Advanced Biomedical and Clinical Diagnostic Systems IX, 78901H (February 21, 2011). doi: 10.1117/12.874258.
  15. Рогаткин ДА. Базовые принципы организации системного программного обеспечения многофункциональных неинвазивных спектрофотометрических диагностических приборов и комплексов. Медицинская техника. 2004;(2):8–12

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Guseva I.A., Rogatkin D.A., Buvalaya E.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies