The function of the left ventricular myocardial segments assessed by velocity vector imaging in patients with a myocardial infarction before and after coronary artery bypass

Cover Page

Cite item

Abstract

Rationale: Velocity vector imaging is a non-invasive technique to analyze left ventricle (LV) fibers and determine the depth and area of an ischemic injury and the response to revascularization.

Aim: To assess LV functional parameters in patients with non Q-wave myocardial infarction and Q-wave myocardial infarction using velocity vector imaging before and in the early postoperative period after coronary bypass grafting.

Methods: We analyzed the strain (S) and strain rate (SR) of longitudinal, circular and radial fibers in 252 LV segments in 14 patients with non Q-wave myocardial infarction (group I) and in 252 segments in 14 patients with Q-wave myocardial infarction (group II) before and at day 12 after coronary bypass grafting.

Results: General analysis of the fibers from all LV segments, as well as a detailed analysis of each segment was performed by velocity vector imaging. The general analysis showed the following: the function of longitudinal fibers in group I was characterized by a low S parameter (-15.2 ± 7.4%) and normal SR (-1.04 ± 0.6 s-1); in group II – a low S (-12.7 ± 6.4%) and SR (-0.80 ± 0.4 s-1). The deformation characteristics of the circular fibers were reduced in both groups (group I: S -17.1 ± 8.9%, SR 1.23 ± 0.7 s-1; group II: S -14.02 ± 8.3%, SR -0.98 ± 0.6 s-1). The radial fibers had normal S values (group I: 29.1 ± 19.9%, group II: 25.9 ± 19.7%), high SR value in group I (1.73 ± 1.0 s-1) and normal SR in group II (1.35 ± 0.6 s-1). After coronary bypass surgery, the group II demonstrated an improvement in the SR of longitudinal (-0.91 ± 0.5 s-1, p = 0.001) and circumferential (-1.11 ± 0.5 s-1, p = 0.001) fibers, whereas the S of radial fibers deteriorated (21.7 ± 8.9%, p = 0.0004). In group I, radial fiber SR became normal (1.39 ± 0.6 s-1, p = 0.0004). A detailed analysis of the LV identified 10 groups of segments depending on the changes S and/or SR. Revascularization had an impact on all segments in patients of both groups. The segments with combined changes in S and SR improved its function. The segments with changes only in S or only in SR reduce their function, which is considered as a step to harmonic contraction.

Conclusion: General analysis of LV fibers shows the impact of myocardial infarction, and the detailed analysis helps to identify the impact of revascularization.

About the authors

E. B. Petrova

Nizhny Novgorod State Medical Academy

Author for correspondence.
Email: eshakhova@yandex.ru

MD, PhD, Associate Professor, Chair of Radiology, Faculty of Postgraduate Training

10/1 Minina i Pozharskogo pl., Nizhny Novgorod, 603005, Russian Federation. Tel.: +7 (831) 433 75 78

Russian Federation

References

  1. Алехин МН. Ультразвуковые методы оценки деформации миокарда и их клиническое значение. М.: Видар-М; 2012. 88 c.
  2. Butz T, Lang CN, van Bracht M, Prull MW, Yeni H, Maagh P, Plehn G, Meissner A, Trappe HJ. Segment- orientated analysis of two-dimensional strain and strain rate as assessed by velocity vector imaging in patients with acute myocardial infarction. Int J Med Sci. 2011;8(2): 106–13. doi: 10.7150/ijms.8.106.
  3. Purushottam B, Parameswaran AC, Figueredo VM. Dyssynchrony in obese subjects without a history of cardiac disease using velocity vector imaging. J Am Soc Echocardiogr. 2011;24(1): 98–106. doi: 10.1016/j.echo.2010.10.003.
  4. Carasso S, Biaggi P, Rakowski H, Mutlak D, Lessick J, Aronson D, Woo A, Agmon Y. Velocity Vector Imaging: standard tissue-tracking results acquired in normals – the VVI-STRAIN study. J Am Soc Echocardiogr. 2012;25(5): 543–52. doi: 10.1016/j.echo.2012.01.005.
  5. Васюк ЮА, ред. Функциональная диагностика в кардиологии: клиническая интерпретация: учебное пособие. М.: Практическая медицина; 2009. 312 с.
  6. Резник ЕВ, Гендлин ГЕ, Сторожаков ГИ. Эхокардиография в практике кардиолога. М.: Практика; 2013. 212 с.
  7. Valocik G, Valocikova I, Mitro P, Fojtikova L, Druzbacka L, Kristofova B, Juhas S, Kolesar A, Sabol F. Diagnostic accuracy of global myocardial deformation indexes in coronary artery disease: a velocity vector imaging study. Int J Cardiovasc Imaging. 2012;28(8): 1931–42. doi: 10.1007/s10554-012-0025-5.
  8. Гиляров МЮ, Мурашова НК, Новикова НА, Седов ВП, Сыркин АЛ. Использование спекл-трекинг эхокардиографии для предсказания жизнеспособности миокарда у больных с постинфарктным кардиосклерозом. Ультразвуковая и функциональная диагностика. 2014;(1): 73–83.
  9. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2016;37(15): 1196–207. doi: 10.1093/eurheartj/ehv529.
  10. Петрова ЕБ. Влияние хирургической и интервенционной реваскуляризации на миокард левого желудочка при использовании технологии визуализации вектора скорости движения миокарда (velocity vector imaging). Медицинская визуализация. 2015;(6): 33–41.
  11. Бузиашвили ЮИ, Кокшенева ИВ, Самсонова НН, Абуков СТ, Бузиашвили ВЮ, Климович ЛГ. Динамика уровня факторов воспалительной реакции в раннем послеоперационном периоде при различных методиках коронарного шунтирования. Кардиология и сердечно-сосудистая хирургия. 2015;(1): 4–11. doi: 10.17116/kardio2015814-11.

Supplementary files

There are no supplementary files to display.


Copyright (c) 2017 Petrova E.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies