Reduction of the risk of thrombosis and restenosis with negatively charged electret covered stents

Cover Page


Cite item

Full Text

Abstract

Rationale: Endovascular implantation may lead to mechanical injury of the vessel walls, their inflammation and subsequent formation of a thrombus in the stented portion of the vessel, as well as to endothelial growth and restenosis. Intimal injury changes the potential of the damaged area from negative to positive.

Aim: To demonstrate the efficacy of corrective negative charge on the stent surface after its endovascular implantation in the reduction of the risk of vessel thrombosis and restenosis.

Materials and methods: With a terminal element technique we created a model for distribution of electrostatic potentials in a healthy and in a partially injured vessel, as well as in a vessel with a negatively charged electret stent. Trials of experimental and serial stents in animals were performed with stent placement into the pig neck arteries with subsequent (at day 21) histological examination of the areas of stent placement. Morphological abnormalities and vessel wall reactions after endovascular carotid stent implantation, such as clot formation and endothelial reaction were assessed.

Results: Negatively charged electret cover of the stent produces corrective electrostatic field to prevent thrombus formation and vascular intima reaction with subsequent restenosis. The use of the stent with negatively charged electret cover ensures a significant reduction of the risk for positive potential inside the injured vessel, thereby dramatically reducing the risk of vessel thrombosis and restenosis. After placement of stents with negatively charged electret cover to animals, there was very mild proliferation of endothelial cells of the vessel wall neointima, compared to that after placement of the reference stents; no thrombus formation was observed. If the reference uncovered stents were placed, there was a dramatic narrowing of the arterial lumen due to proliferation of endothelial neointimal cells, as well as full thrombotic closure of the vessel.

Conclusion: The suggested technology allows for improvement of endovascular stent placement, for reduction of the risk of thrombosis and restenosis after endovascular interventions aimed at revascularization of arterial stenosis.

About the authors

M. Fishman

Center for Medical Technology

Author for correspondence.
Email: isragardens@gmail.com

МD, General Manager

9/34 Anoar Aoved str., Ashkelon, 7875109, Israel. Tel.: 076 547 84 94

Israel

M. Knyazhansky

Sami Shamoon Engineering College

Email: fake@neicon.ru

PhD, Senior Lecturer, Software Engineering Department

84 Jabotinsky str., Ashdod, 77245, Israel

Israel

A. Nemets

Medical University Center Barzilai

Email: fake@neicon.ru

MD, Head of Department of Thrombosis and Hemostasis, Department of Hematology

2 Histadrut str., Ashkelon, 7830604, Israel

Israel

A. Tsun

Center for Medical Technology

Email: fake@neicon.ru

PhD, Head of Research and Development Department

9/34 Anoar Aoved str., Ashkelon, 7875109, Israel

Israel

References

  1. Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol. 2003;58:1–26. doi: 10.1016/S0070-2153(03)58001-2.
  2. Кириллов СК. Изменение сосудистых потенциалов под воздействием низкочастотного ультразвука. Биоэлектрические основы применения низкочастотного ультразвука для лечения острой непроходимости кровеносных сосудов. Смоленская медицинская академия; 1996 [Интернет]. Доступно на: http://www.smolensk.ru/user/sgma/MMORPH/N-1-html/12.htm.
  3. Bai H, McCaig CD, Forrester JV, Zhao M. DC electric fields induce distinct preangiogenic responses in microvascular and macrovascular cells. Arterioscler Thromb Vasc Biol. 2004;24(7): 1234–9. doi: 10.1161/01.ATV.0000131265.76828.8a.
  4. Liani M, Trabassi E, Cusaro C, Zoppis E, Maduli E, Pezzato R, Piccoli P, Maraschin M, Bau P, Cortese P, Cogo A, Salvati F, Liani R. Effects of a pulsatile electrostatic field on ischemic injury to the diabetic foot: evaluation of refractory ulcers. Prim Care Diabetes. 2014;8(3): 244–9. doi: 10.1016/j.pcd.2013.11.009.
  5. Electrostatic field therapy. Prospect of Conexionvital [Internet]. Available from: http://www.conexionvital.org/conexionvital/conexionvital_high_potencial_therapy_.pdf.
  6. Kloth LC. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds. 2005;4(1): 23–44. doi: 10.1177/1534734605275733.
  7. Messerli MA, Graham DM. Extracellular electrical fields direct wound healing and regeneration. Biol Bull. 2011;221(1): 79–92. doi: 10.1086/BBLv221n1p79.
  8. Electric field therapy. Materials of LK Ayurveda Research Training Centre & Pusat Rawatan Naturopati [Internet]. Available from: http://munu2u.com/v0/index.php? route=information/information&information_id=11.
  9. Li L, Gu W, Du J, Reid B, Deng X, Liu Z, Zong Z, Wang H, Yao B, Yang C, Yan J, Zeng L, Chalmers L, Zhao M, Jiang J. Electric fields guide migration of epidermal stem cells and promote skin wound healing. Wound Repair Regen. 2012;20(6): 840–51. doi: 10.1111/j.1524-475X.2012.00829.x.
  10. Thakral G, Lafontaine J, Najafi B, Talal TK, Kim P, Lavery LA. Electrical stimulation to accelerate wound healing. Diabet Foot Ankle. 2013;4. doi: 10.3402/dfa.v4i0.22081.
  11. Lan H, Mingli Z, Jian J, Zhenzhong W. The experimental research on the effect of electret on wound healing. Academic Journal of Second Military Medical University. 1996;05 [Internet]. Available from: http://en.cnki.com.cn/Article_en/CJFDTOTAL-DEJD605.030.htm.
  12. The mechanism and function of high-voltage and low-voltage electrostatic field energy. Cobjack (Hong Kong) Industrial Corporation Limited. TCM Therapy Series. CK-XL-YQ-49C [Internet]. Available from: http://www.cobjack.com/cc?ID=therapy,2844&url=_print.
  13. Sheikh AQ, Taghian T, Hemingway B, Cho H, Kogan AB, Narmoneva DA. Regulation of endothelial MAPK/ERK signalling and capillary morphogenesis by low-amplitude electric field. J R Soc Interface. 2013;10(78): 20120548. doi: 10.1098/rsif.2012.0548.
  14. Kestelman VN, Pinchuk LS, Goldade VA. Electrets in engineering: fundamentals and applications. Springer Science & Business Media; 2000. 281 p.
  15. Копышев МА. Применение электретов в медицине. СПб.: НПФ «ЭЛМЕТ»; 2006.
  16. Быстров ЮА, Комлев АЕ. Получение пленок оксида тантала с электретными свойствами [Интернет]. Доступно на: http://fep-tti-sfedu.ru/books/conferenc/pem2004/part2/041.pdf.
  17. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117(4): 500–44. doi: 10.1113/jphysiol.1952.sp004764.
  18. Sawyer PN, Himmelfarb E, Lustrin I, Ziskind H. Measurement of streaming potentials of mammalian blood vessels, aorta and vena cava, in vivo. Biophys J. 1966;6(5): 641–51. doi: 10.1016/S0006-3495(66)86683-3.
  19. Zimmerman WBJ. Process modelling and simulation with finite element methods. Singapore: World Scientific; 2004. 396 p.
  20. Pryor RW. Multiphysics modeling using COMSOL v. 4. Jones & Bartlett Learning; 2011. 852 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Fishman M., Knyazhansky M., Nemets A., Tsun A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies