Comparative analysis of serum and tumor vascular endothelial growth factor, insulin-like growth factor 1, matrix metalloproteinase 7 levels in patients with ovarian cancer

Cover Page


Cite item

Full Text

Abstract

Aim: To perform a comparative analysis with simultaneous measurement of vascular endothelial growth factor (VEGF), insulin-like growth factor 1 (IGF1) and matrix metalloproteinase 7 (MMP7) in serum samples taken from healthy women and ovarian cancer patients; to perform association of these markers with their expression in primary tumors depending on clinical, morphological and biochemical characteristics of the disease and its prognosis. Materials and methods: We assessed 54 treatment-naïve patients with ovarian cancer aged from 23 to 74 years (mean ± SD, 53.2 ± 1.9), being at various FIGO stages of the disease. The control group consisted of 120 healthy women of matched age and reproductive status, in whom serum biomarker levels were studied. Patient survival was assessed by the Kaplan-Meier method, with survival curves compared with log-rank test. All analyses were done with “STATISTICA” and SPSS software. Results: Serum VEGF levels in ovarian cancer patients were significantly (p < 0.0001) higher compared those in the control. The most informative cut-off values differentiating the groups studied were serum VEGF values of < 350 pg/ml (median value in the control) and > 505 pg/ml (upper quartile in the control). With 505 pg/ml taken as a threshold, the test had sensitivity of 79.6% and specificity of 75%. Another cut-off value of serum VEGF level between the patients with ovarian cancer and the control group (510 pg/ml) was derived from ROC curves and 75% sensitivity and 78.2% specificity. No acceptable cut-off value for serum IGF1 to differentiate between the patients with ovarian cancer and the controls could be obtained from the ROC curves. Serum MMP7 levels in the patients with ovarian cancer were significantly higher than those in the control group (Mann-Whitney test p < 0.0001). With ROC curves, the best sensitivity to specificity ratio for MMP7 value of 4.6 ng/ml was obtained to differentiate between the patients with ovarian cancer and the controls (sensitivity 83.3%, and specificity 81%). The variance analysis did not reveal any association between serum VEGF, IGF1 and MMP7 and age of patients with ovarian cancer, tumor histology, concomitant somatic and gynecological diseases, and CA-125 levels. Serum VEGF and IGF1 levels did not correlate with the stage of ovarian cancer, in contrast to MMP7, whose levels were significantly higher in stages IIIc–IV. The median VEGF level significantly increased as the degree of differentiation decreased from 510 to 622 pg/ml (p < 0.002), while median IGF1, on the contrary, decreased from 219 to 116 pg/ml (p < 0.0001). There was a direct correlation between serum and tumor VEGF levels in ovarian cancer patients (r = 0.65, p < 0.0001). On the contrary, there was an inverse correlation between serum and tumor IGF1 levels (r = -0.68, p < 0.0001). Serum and tumor MMP7 levels remained unrelated to each other. Tumor VEGF, IGF1 and MMP7 content was unrelated to the age of the patients, their reproductive status, presence of concomitant somatic and gynecological diseases, histology of ovarian cancer, and serum CA-125 levels. VEGF levels in the tumor were not associated with the stage of ovarian cancer, but in patients with initial stages Ia and Ib stages MMP7 values significantly lower (2.1 ng/mg protein) compared to those in stages IIIc and IV (6.1 and 4.7 ng/mg protein, respectively, p < 0.05). Similar pattern was noted for IGF1: tumor IGF1 values in the patients with stages Ia–Ib were significantly lower (0.5 ng/mg protein) than those with stages IIIc–IV (median, 1.3–1.4 ng/mg protein). A significant increase in both serum and tumor VEGF levels was detected in the patients with ovarian cancer with decreased degree of differentiation. On the contrary, tumor IGF1 levels, but not serum ones, were significantly increased from 0.6 to 1.4 ng/ml in the patients with poorly differentiated ovarian cancer. MMP7 tumor expression did not depend on the degree of its differentiation. Serum VEGF levels above 700 pg/ml and tumor levels of above 590 ng/mg protein should be considered as unfavorable prognostic factors in patients with ovarian cancer.

About the authors

Ya. Z. Plieva

Moscow State University of Medicine and Dentistry
named after A.I. Evdokimov

Author for correspondence.
Email: biochimia@yandex.ru
PhD Student, Chair of Clinical Biochemistry and Laboratory Diagnostics Russian Federation

V. D. Ermilova

N.N. Blokhin National Medical Research Center of
Oncology

Email: fake@neicon.ru
MD, PhD, Leading Research Fellow, Department of Pathological Anatomy of Human Tumors Russian Federation

I. V. Tereshkina

Moscow State University of Medicine and Dentistry
named after A.I. Evdokimov

Email: fake@neicon.ru
MD, PhD, Gynecologist, Competitor, Chair of Clinical Biochemistry and Laboratory Diagnostics Russian Federation

D. N. Kushlinskiy

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov

Email: fake@neicon.ru
MD, PhD, Oncogynecologist, Department of Combined Methods of Treatment Russian Federation

V. M. Shelepova

N.N. Blokhin National Medical Research Center of
Oncology

Email: fake@neicon.ru
MD, PhD, Leading Research Fellow, Laboratory of Oncoimmunology Russian Federation

D. O. Utkin

Moscow State University of Medicine and Dentistry
named after A.I. Evdokimov

Email: fake@neicon.ru
PhD Student, Chair of Clinical Biochemistry and Laboratory Diagnostics Russian Federation

S. V. Khokhlova

N.N. Blokhin National Medical Research Center of
Oncology

Email: fake@neicon.ru
MD, PhD, Senior Research Fellow, Chemotherapy Department Russian Federation

E. K. Dvorova

N.N. Blokhin National Medical Research Center of
Oncology

Email: fake@neicon.ru
Statistical Engineer Russian Federation

Yu. G. Payanidi

N.N. Blokhin National Medical Research Center of
Oncology

Email: fake@neicon.ru
MD, PhD, Professor, Department of Oncogynecology Russian Federation

K. I. Zhordania

N.N. Blokhin National Medical Research Center of
Oncology

Email: fake@neicon.ru
MD, PhD, Professor, Department of Oncogynecology Russian Federation

References

  1. Герштейн ЕС, Кушлинский НЕ. Ассоциированные с опухолью протеазы и их тканевые ингибиторы. В: Кушлинский НЕ, Красильников МА, ред. Биологические маркеры опухолей: фундаментальные и клинические исследования. М.: Издательство РАМН; 2017. с. 197–230.
  2. Gao H, Lan X, Li S, Xue Y. Relationships of MMP-9, E-cadherin, and VEGF expression with clinicopathological features and response to chemosensitivity in gastric cancer. Tumour Biol. 2017;39(5): 1010428317698368. doi: 10.1177/1010428317698368.
  3. Liang L, Yue Z, Du W, Li Y, Tao H, Wang D, Wang R, Huang Z, He N, Xie X, Han Z, Liu N, Li Z. Molecular imaging of inducible VEGF expression and tumor progression in a breast cancer model. Cell Physiol Biochem. 2017;42(1): 407–15. doi: 10.1159/000477485.
  4. Poljicanin A, Filipovic N, Vukusic Pusic T, Sol-jic V, Caric A, Saraga-Babic M, Vukojevic K. Expression pattern of RAGE and IGF-1 in the human fetal ovary and ovarian serous carcinoma. Acta Histochem. 2015;117(4–5): 468–76. doi: 10.1016/j.acthis.2015.01.004.
  5. Gianuzzi X, Palma-Ardiles G, Hernandez-Fernandez W, Pasupuleti V, Hernandez AV, Perez-Lopez FR. Insulin growth factor (IGF) 1, IGF-binding proteins and ovarian cancer risk: a systematic review and meta-analysis. Maturitas. 2016;94:22–9. doi: 10.1016/j.maturitas.2016.08.012.
  6. Yunusova NV, Villert AB, Spirina LV, Frolova AE, Kolomiets LA, Kondakova IV. Insulin-like growth factors and their binding proteins in tumors and ascites of ovarian cancer patients: association with response to neoadjuvant chemotherapy. Asian Pac J Cancer Prev. 2016;17(12): 5315–20. doi: 10.22034/APJCP.2016.17.12.5315.
  7. Кушлинский НЕ, Герштейн ЕС, Короткова ЕА, Пророков ВВ. Прогностическое значение ассоциированных с опухолью протеаз при раке толстой кишки. Бюллетень экспериментальной биологии и медицины. 2012;154(9): 350–6.
  8. Шадрина АС, Плиева ЯЗ, Кушлинский ДН, Морозов АА, Филипенко МЛ, Чанг ВЛ, Кушлинский НЕ. Классификация, регуляция активности, генетический полиморфизм матриксных металлопротеиназ в норме и при патологии. Альманах клинической медицины. 2017;45(4): 266–79. doi: 10.18786/2072-0505-2017-45-4-266-279.
  9. Duffy MJ, McGowan PM, Gallagher WM. Cancer invasion and metastasis: changing views. J Pathol. 2008;214(3): 283–93. doi: 10.1002/ path.2282.
  10. Rasool M, Malik A, Basit Ashraf MA, Parveen G, Iqbal S, Ali I, Qazi MH, Asif M, Kamran K, Iqbal A, Iram S, Khan SU, Mustafa MZ, Zaheer A, Shaikh R, Choudhry H, Jamal MS. Evaluation of matrix metalloproteinases, cytokines and their potential role in the development of ovarian cancer. PLoS One. 2016;11(11):e0167149. doi: 10.1371/journal.pone.0167149.
  11. Isaacson KJ, Martin Jensen M, Subrahmanyam NB, Ghandehari H. Matrix-metalloproteinases as targets for controlled delivery in cancer: an analysis of upregulation and expression. J Control Release. 2017;259:62–75. doi: 10.1016/j.jconrel.2017.01.034.
  12. Jackson HW, Defamie V, Water-house P, Khokha R. TIMPs: versatile extracellular regulators in cancer. Nat Rev Cancer. 2017;17(1): 38–53. doi: 10.1038/nrc.2016.115.
  13. Zhang Y, Chen Q. Relationship between matrix metalloproteinases and the occurrence and development of ovarian cancer. Braz J Med Biol Res. 2017;50(6):e6104. doi: 10.1590/1414-431X20176104.
  14. González-Palomares B, Coronado Martín PJ, Maestro de Las Casas ML, Veganzones de Castro S, Rafael Fernández S, Vidaurreta Lázaro M, De la Orden García V, Vidart Aragon JA. Vascular endothelial growth factor (VEGF) polymorphisms and serum VEGF levels in women with epithelial ovarian cancer, benign tumors, and healthy ovaries. Int J Gynecol Cancer. 2017;27(6): 1088–95. doi: 10.1097/IGC.0000000000001006.
  15. Mukherjee S, Pal M, Mukhopadhyay S, Das I, Hazra R, Ghosh S, Mondal RK, Bal R. VEGF expression to support targeted therapy in ovarian surface epithelial neoplasms. J Clin Diagn Res. 2017;11(4):EC43–6. doi: 10.7860/ JCDR/2017/24670.9737.
  16. Bruchim I, Werner H. Targeting IGF-1 signaling pathways in gynecologic malignancies. Expert Opin Ther Targets. 2013;17(3): 307–20. doi: 10.1517/14728222.2013.749863.
  17. Tas F, Karabulut S, Serilmez M, Ciftci R, Duranyildiz D. Clinical significance of serum insulin-like growth factor-1 (IGF-1) and insulinlike growth factor binding protein-3 (IGFBP-3) in patients with epithelial ovarian cancer. Tumour Biol. 2014;35(4): 3125–32. doi: 10.1007/ s13277-013-1405-8.
  18. Higashiguchi T, Hotta T, Takifuji K, Yokoyama S, Matsuda K, Tominaga T, Oku Y, Yamaue H. Clinical impact of matrix metalloproteinase-7 mRNA expression in the invasive front and inner surface of tumor tissues in patients with colorectal cancer. Dis Colon Rectum. 2007;50(10): 1585–93. doi: 10.1007/s10350-007-9016-3.
  19. Mieszało K, Ławicki S, Szmitkowski M. The utility of metalloproteinases (MMPs) and their inhibitors (TIMPs) in diagnostics of gynecological malignancies. Pol Merkur Lekarski. 2016;40(237): 193–7.
  20. Juchniewicz A, Kowalczuk O, Milewski R, Laudański W, Dzięgielewski P, Kozłowski M, Nikliński J. MMP-10, MMP-7, TIMP-1 and TIMP-2 mRNA expression in esophageal cancer. Acta Biochim Pol. 2017;64(2): 295–9. doi: 10.18388/ abp.2016_1408.
  21. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25(1): 9–34. doi: 10.1007/ s10555-006-7886-9.
  22. Brokaw J, Katsaros D, Wiley A, Lu L, Su D, Sochirca O, de la Longrais IA, Mayne S, Risch H, Yu H. IGF-I in epithelial ovarian cancer and its role in disease progression. Growth Factors. 2007;25(5): 346–54. doi: 10.1080/08977190701838402.
  23. Serin IS, Tanriverdi F, Yilmaz MO, Ozcelik B, Unluhizarci K. Serum insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3, leptin concentrations and insulin resistance in benign and malignant epithelial ovarian tumors in postmenopausal women. Gynecol Endocrinol. 2008;24(3): 117–21. doi: 10.1080/09513590801895559.
  24. Chen HX, Xu XX, Tan BZ, Zhang Z, Zhou XD. MicroRNA-29b inhibits angiogenesis by targeting VEGFA through the MAPK/ERK and PI3K/Akt signaling pathways in endometrial carcinoma. Cell Physiol Biochem. 2017;41(3): 933–46. doi: 10.1159/000460510.
  25. Eliassen AH, Hankinson SE. Endogenous hormone levels and risk of breast, endometrial and ovarian cancers: prospective studies. Adv Exp Med Biol. 2008;630:148–65.
  26. Terry KL, Tworoger SS, Gates MA, Cramer DW, Hankinson SE. Common genetic variation in IGF1, IGFBP1 and IGFBP3 and ovarian cancer risk. Carcinogenesis. 2009;30(12): 2042–6. doi: 10.1093/carcin/bgp257.
  27. Ose J, Schock H, Poole EM, Lehtinen M, Visvanathan K, Helzlsouer K, Buring JE, Lee IM, Tjønneland A, Boutron-Ruault MC, Trichopoulou A, Mattiello A, Onland-Moret NC, Weiderpass E, Sánchez MJ, Idahl A, Travis RC, Rinaldi S, Merritt MA, Wentzensen N, Tworoger SS, Kaaks R, Fortner RT. Pre-diagnosis insulin-like growth factor-I and risk of epithelial invasive ovarian cancer by histological subtypes: a collaborative re-analysis from the Ovarian Cancer Cohort Consortium. Cancer Causes Control. 2017;28(5): 429–35. doi: 10.1007/s10552-017-0852-8.
  28. Eckstein N, Servan K, Hildebrandt B, Pölitz A, von Jonquières G, Wolf-Kümmeth S, Napierski I, Hamacher A, Kassack MU, Budczies J, Beier M, Dietel M, Royer-Pokora B, Denkert C, Royer HD. Hyperactivation of the insulin-like growth factor receptor I signaling pathway is an essential event for cisplatin resistance of ovarian cancer cells. Cancer Res. 2009;69(7): 2996–3003. doi: 10.1158/0008-5472.CAN-08-3153.
  29. Macedo F, Ladeira K, Longatto-Filho A, Martins SF. Gastric cancer and angiogenesis: is VEGF a useful biomarker to assess progression and remission? J Gastric Cancer. 2017;17(1): 1–10. doi: 10.5230/jgc.2017.17.e1.
  30. Koti M, Gooding RJ, Nuin P, Haslehurst A, Crane C, Weberpals J, Childs T, Bryson P, Dharsee M, Evans K, Feilotter HE, Park PC, Squire JA. Identification of the IGF1/PI3K/NF κB/ERK gene signalling networks associated with chemotherapy resistance and treatment response in high-grade serous epithelial ovarian cancer. BMC Cancer. 2013;13:549. doi: 10.1186/1471-2407-13-549.
  31. Bueno MJ, Mouron S, Quintela-Fandino M. Personalising and targeting antiangiogenic resistance: a complex and multifactorial approach. Br J Cancer. 2017;116(9): 1119–25. doi: 10.1038/ bjc.2017.69.
  32. Chase DM, Chaplin DJ, Monk BJ. The development and use of vascular targeted therapy in ovarian cancer. Gynecol Oncol. 2017;145(2): 393–406. doi: 10.1016/j.ygyno.2017.01.031.
  33. Roskoski R Jr. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res. 2017;120:116–32. doi: 10.1016/j. phrs.2017.03.010.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Plieva Y.Z., Ermilova V.D., Tereshkina I.V., Kushlinskiy D.N., Shelepova V.M., Utkin D.O., Khokhlova S.V., Dvorova E.K., Payanidi Y.G., Zhordania K.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies