The role of hypoxia-induced factor in the regulation of oxygen homeostasis during reparative regeneration in compromised microcirculation

Cover Page


Cite item

Full Text

Abstract

The aim of the present review is to find an answer to the clinically important question on the mechanisms regulating the activity of reparative regeneration in hypoxic conditions and potential ways to modify this process. In the recent studies, compensated hypoxia is characterized as a trigger for the regeneration, with the central regulating factor being the member of the cytokine family, hypoxia-inducible factor-1 (HIF-1). Changes in the concentration of this protein modulates cell migration, angiogenesis and epithelialmesenchymal integration; it also stimulates the proliferation of endothelial cells and fibroblasts, playing a  major role in the stimulation of wound healing, especially with compromised microcirculation, for example, diabetes mellitus.

 

About the authors

S. G. Izmaylov

Сity Clinical Hospital No 30 of Moscow District (Nizhniy Novgorod);
Nizhny Novgorod State Medical Academy

Email: fake@neicon.ru
MD, PhD, Professor, Chair of Surgical Diseases Russian Federation

V. V. Beschastnov

Сity Clinical Hospital No 30 of Moscow District (Nizhniy Novgorod);
Nizhny Novgorod State Medical Academy

Email: fake@neicon.ru
MD, PhD, Associate Professor, Chair of Surgical Diseases Russian Federation

M. G. Ryabkov

Сity Clinical Hospital No 30 of Moscow District (Nizhniy Novgorod);
Nizhny Novgorod State Medical Academy

Email: fake@neicon.ru
MD, PhD, Professor, Chair of Surgical Diseases Russian Federation

A. E. Leont'ev

Сity Clinical Hospital No 30 of Moscow District (Nizhniy Novgorod);
Nizhny Novgorod State Medical Academy

Email: fake@neicon.ru
MD, PhD, Associate Professor, Chair of Surgical Diseases Russian Federation

E. E. Lukoyanychev

Сity Clinical Hospital No 30 of Moscow District (Nizhniy Novgorod);
Nizhny Novgorod State Medical Academy

Email: fake@neicon.ru
MD, PhD, Associate Professor, Chair of Surgical Diseases Russian Federation

M. V. Bagryantsev

Сity Clinical Hospital No 30 of Moscow District (Nizhniy Novgorod);
Nizhny Novgorod State Medical Academy

Author for correspondence.
Email: maks-bagryancev@mail.ru
PhD Student, Chair of Surgical Diseases Russian Federation

N. Yu. Orlinskaya

Nizhny Novgorod State Medical Academy

Email: fake@neicon.ru
MD, PhD, Professor, Chair of Pathological Anatomy Russian Federation

References

  1. Косолапов ВА, Спасов АА, Островский ОВ. Изучение защитного действия антиоксидантных веществ при гипобарической гипоксии у высоко- и низкоустойчивых к гипоксии животных. В: Антигипоксанты и актопротекторы: итоги и перспективы. Материалы конференции. Санкт-Петербург, 01–03 марта 1994 г. СПб.: Военно-медицинская академия имени С.М. Кирова; 1994. с. 48.
  2. Лукьянова ЛД. Биоэнергетическая гипоксия: понятие, механизмы и способы коррекции. Бюллетень экспериментальной биологии и медицины. 1997;124(9): 244–54.
  3. Рябов ГА. Синдромы критических состояний. М.: Медицина; 1994. 368 c.
  4. Лукьянова ЛД, Кирова ЮИ, Сукоян ГВ. Сигнальные механизмы адаптации к гипоксии и их роль в системной регуляции. Биологические мембраны. 2012;29(4): 238–52.
  5. Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25(1): 9–18. doi: 10.1016/j.clindermatol.2006.09.007.
  6. Murdoch C, Muthana M, Lewis CE. Hypoxia regulates macrophage functions in inflammation. J Immunol. 2005;175(10): 6257–63. doi: 10.4049/jimmunol.175.10.6257.
  7. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3): 399–408. doi: 10.1016/j.cell.2012.01.021.
  8. Weidemann A, Johnson RS. Biology of HIF-1alpha. Cell Death Differ. 2008;15(4): 621–7. doi: 10.1038/cdd.2008.12.
  9. Hoffman EC, Reyes H, Chu FF, Sander F, Conley LH, Brooks BA, Hankinson O. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science. 1991;252(5008): 954–8. doi: 10.1126/science.1852076.
  10. Labrecque MP, Prefontaine GG, Beischlag TV. The aryl hydrocarbon receptor nuclear translocator (ARNT) family of proteins: transcriptional modifiers with multi-functional protein interfaces. Curr Mol Med. 2013;13(7): 1047–65. doi: 10.2174/15665240113139990042.
  11. Berra E, Roux D, Richard DE, Pouysségur J. Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep. 2001;2(7): 615–20. doi: 10.1093/embo-reports/kve130.
  12. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733): 271–5. doi: 10.1038/20459.
  13. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000;2(7): 423–7. doi: 10.1038/35017054.
  14. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12): 5447–54. doi: 10.1128/MCB.12.12.5447.
  15. Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem. 1993;268(29): 21513–8.
  16. Ahluwalia A, Tarnawski AS. Critical role of hypoxia sensor – HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr Med Chem. 2012;19(1): 90–7. doi: 10.2174/092986712803413944.
  17. Andrikopoulou E, Zhang X, Sebastian R, Marti G, Liu L, Milner SM, Harmon JW. Current Insights into the role of HIF-1 in cutaneous wound healing. Curr Mol Med. 2011;11(3): 218–35. doi: 10.2174/156652411795243414.
  18. Chen GJ, Chen YH, Yang XQ, Li ZJ. Nano-microcapsule basic fibroblast growth factor combined with hypoxia-inducible factor-1 improves random skin flap survival in rats. Mol Med Rep. 2016;13(2): 1661–6. doi: 10.3892/ mmr.2015.4699.
  19. Kalucka J, Ettinger A, Franke K, Mamlouk S, Singh RP, Farhat K, Muschter A, Olbrich S, Breier G, Katschinski DM, Huttner W, Weidemann A, Wielockx B. Loss of epithelial hypoxia-inducible factor prolyl hydroxylase 2 accelerates skin wound healing in mice. Mol Cell Biol. 2013;33(17): 3426–38. doi: 10.1128/ MCB.00609-13.
  20. Ruthenborg RJ, Ban JJ, Wazir A, Takeda N, Kim JW. Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1. Mol Cells. 2014;37(9): 637–43. doi: 10.14348/molcells.2014.0150.
  21. Hong WX, Hu MS, Esquivel M, Liang GY, Rennert RC, McArdle A, Paik KJ, Duscher D, Gurtner GC, Lorenz HP, Longaker MT. The role of hypoxia-inducible factor in wound healing. Adv Wound Care (New Rochelle). 2014;3(5): 390–9. doi: 10.1089/wound.2013.0520.
  22. Botusan IR, Sunkari VG, Savu O, Catrina AI, Grünler J, Lindberg S, Pereira T, Ylä-Herttuala S, Poellinger L, Brismar K, Catrina SB. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci U S A. 2008;105(49): 19426–31. doi: 10.1073/ pnas.0805230105.
  23. Myllyharju J. Prolyl 4-hydroxylases, master regulators of the hypoxia response. Acta Physiol (Oxf). 2013;208(2): 148–65. doi: 10.1111/ apha.12096.
  24. Ram M, Singh V, Kumawat S, Kumar D, Lingaraju MC, Uttam Singh T, Rahal A, Tandan SK, Kumar D. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol. 2015;764:9–21. doi: 10.1016/j. ejphar.2015.06.029.
  25. Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J. 2007;405(1): 1–9. doi: 10.1042/BJ20070389.
  26. Duscher D, Maan ZN, Whittam AJ, Sorkin M, Hu MS, Walmsley GG, Baker H, Fischer LH, Januszyk M, Wong VW, Gurtner GC. Fibroblast-specific deletion of hypoxia inducible factor-1 critically impairs murine cutaneous neovascularization and wound healing. Plast Reconstr Surg. 2015;136(5): 1004–13. doi: 10.1097/PRS.0000000000001699.
  27. Leung KW, Ng HM, Tang MK, Wong CC, Wong RN, Wong AS. Ginsenoside-Rg1 mediates a hypoxia-independent upregulation of hypoxia-inducible factor-1α to promote angiogenesis. Angiogenesis. 2011;14(4): 515–22. doi: 10.1007/s10456-011-9235-z.
  28. Pichu S, Sathiyamoorthy J, Krishnamoorthy E, Umapathy D, Viswanathan V. Impact of the hypoxia inducible factor-1α (HIF-1α) pro582ser polymorphism and its gene expression on diabetic foot ulcers. Diabetes Res Clin Pract. 2015;109(3): 533–40. doi: 10.1016/j.diabres.2015.05.014.
  29. Catrina SB, Zheng X. Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers. Diabetes Metab Res Rev. 2016;32 Suppl 1:179–85. doi: 10.1002/ dmrr.2742.
  30. García-Martín R, Alexaki VI, Qin N, Rubín de Celis MF, Economopoulou M, Ziogas A, Gercken B, Kotlabova K, Phieler J, Ehrhart-Bornstein M, Bornstein SR, Eisenhofer G, Breier G, Blüher M, Hampe J, El-Armouche A, Chatzigeorgiou A, Chung KJ, Chavakis T. Adipocyte-specific hypoxia-inducible factor 2α deficiency exacerbates obesity-induced brown adipose tissue dysfunction and metabolic dysregulation. Mol Cell Biol. 2015;36(3): 376–93. doi: 10.1128/ MCB.00430-15.
  31. Heyman SN, Leibowitz D, Mor-Yosef Levi I, Liberman A, Eisenkraft A, Alcalai R, Khamaisi M, Rosenberger C. Adaptive response to hypoxia and remote ischaemia pre-conditioning: a new hypoxia-inducible factors era in clinical medicine. Acta Physiol (Oxf). 2016;216(4): 395–406. doi: 10.1111/apha.12613.
  32. Винник ЮС, Салмина АБ, Теплякова ОВ, Дробушевская АИ, Пожиленкова ЕА, Моргун АВ, Шапран МВ, Коваленко АО. Комбинированная озонотерапия в лечении инфекционных заболеваний мягких тканей у больных сахарным диабетом. Хирургия. Журнал им. Н.И. Пирогова. 2015;(2): 63–9. doi: 10.17116/hirurgia2015263-69.
  33. Gao W, Ferguson G, Connell P, Walshe T, Murphy R, Birney YA, O'Brien C, Cahill PA. High glucose concentrations alter hypoxia-induced control of vascular smooth muscle cell growth via a HIF-1alpha-dependent pathway. J Mol Cell Cardiol. 2007;42(3): 609–19. doi: 10.1016/j. yjmcc.2006.12.006.
  34. Zhang X, Yan X, Cheng L, Dai J, Wang C, Han P, Chai Y. Wound healing improvement with PHD-2 silenced fibroblasts in diabetic mice. PLoS One. 2013;8(12):e84548. doi: 10.1371/journal.pone.0084548.
  35. Yu DH, Mace KA, Hansen SL, Boudreau N, Young DM. Effects of decreased insulin-like growth factor-1 stimulation on hypoxia inducible factor 1-alpha protein synthesis and function during cutaneous repair in diabetic mice. Wound Repair Regen. 2007;15(5): 628–35. doi: 10.1111/j.1524-475X.2007.00274.x.
  36. Thangarajah H, Vial IN, Grogan RH, Yao D, Shi Y, Januszyk M, Galiano RD, Chang EI, Galvez MG, Glotzbach JP, Wong VW, Brownlee M, Gurtner GC. HIF-1alpha dysfunction in diabetes. Cell Cycle. 2010;9(1): 75–9. doi: 10.4161/cc.9.1.10371.
  37. Cadet JL, Krasnova IN. Cellular and molecular neurobiology of brain preconditioning. Mol Neurobiol. 2009;39(1): 50–61. doi: 10.1007/ s12035-009-8051-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Izmaylov S.G., Beschastnov V.V., Ryabkov M.G., Leont'ev A.E., Lukoyanychev E.E., Bagryantsev M.V., Orlinskaya N.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies