Expression levels of the apoptosis genes FAS, TNFR2, TRAIL, DR3 and DR4/5 in patients with newly diagnosed chronic lymphatic leukemia before and after treatment with fludarabine, cyclophosphamide and rituximab (FCR)

Cover Page


Cite item

Full Text

Abstract

Background: We have previously shown that the FAS, TNFR2, TRAIL, DR3, DR4/5 gene expression in patients with newly diagnosed chronic lymphoblastic leukemia (CLL) correlates with clinical manifestations of the disease: they are minimal in patients with high activity of the proapoptotic genes and low activity of the apoptosis-inhibiting genes, and advanced in patients with high expression of the anti-apoptotic and low expression of the pro-apoptotic genes.

Aim: To compare the levels of expression of the external apoptosis pathway genes in patients with newly diagnosed CLL before and after chemotherapy with fludarabine, cyclophosphamide and rituximab (FCR), taking into account baseline clinical data and the response to treatment.

Materials and methods: This prospective one-center cohort study included 23 patients with newly diagnosed CLL, who underwent clinical and diagnostic assessments and treatment from November 2014 to December 2017. Immunophenotyping of peripheral blood lymphocytes for CLL diagnosis was done by fourcolor flow cytometry. Expression of the external apoptosis pathway genes was assessed by realtime reverse transcriptase polymerase chain reaction. All patients were treated with a standard FCR regimen with subsequent maintenance treatment with rituximab.

Results: There were more men (n = 16) than women among our 23 CLL patients. Median age was 64 years (range, from 47 to 77 years). Sixteen (16) patients had CLL Rai Grade I and II, and 7 patients had CLL Grades III and IV. For convenience of analysis, all patients were divided into two groups depending on the FAS gene expression. At baseline, the patients with high FAS expression had higher TNFR2 (p < 0.0015) and TRAIL (p < 0.0053) expression levels. Before FCR therapy, the patients with low FAS expression had higher lymphocyte counts (р = 0.0016) and lower erythrocyte counts (р = 0.0159). At baseline, there were more Grade I and II patients in the group with higher FAS expression (р = 0.0205). At day 3 after the end of a four day FCR cycle, there was an increase only of the FAS (p = 0.0025) and TRAIL (p = 0.0045) expression. After the completion of the first FCR cycle, lymphocyte counts in the patients with low FAS expression decreased earlier than those in the patients with high FAS expression (p = 0.0019). After six FCR cycles, complete or partial remission was obtained in 82% (19/23) of the patients. The patients with high FAS expression had higher complete remission rate (р = 0.026). No adverse events related to FCR were registered.

Conclusion: The external apoptosis pathway genes are one of the key factors of the tumor progression in CLL. Our data on the effect of FCR therapy on the FAS and TRAIL gene expression make it possible to consider them as a target for this combination regimen and may become the rationale to develop new pharmaceutical molecules.

About the authors

S. G. Zakharov

Moscow Regional Research and Clinical Institute (MONIKI)

Author for correspondence.
Email: hematologymoniki@mail.ru

Sergey G. Zakharov – MD, Research Fellow, Department of Clinical Hematology and Immunotherapy

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

A. K. Golenkov

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Anatoliy K. Golenkov – MD, PhD, Professor, Head of the Department of Clinical Hematology and Immunotherapy 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

V. A. Misyurin

N.N. Blokhin National Medical Research Centre of Oncology

Email: fake@neicon.ru

Vsevolod A. Misyurin – PhD in Biology, Senior Research Fellow, Laboratory of Experimental Diagnostics and Biotherapy of Tumors 

24 Kashirskoe shosse, Moscow, 115478

Russian Federation

E. V. Kataeva

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Elena V. Kataeva – MD, PhD, Senior Research Fellow, Department of Clinical Hematology and Immunotherapy 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

M. A. Baryshnikova

N.N. Blokhin National Medical Research Centre of Oncology

Email: fake@neicon.ru

Mariya A. Baryshnikova – PhD in Pharmacology, Head of the Laboratory of Experimental Diagnostics and Biotherapy of Tumors 

24 Kashirskoe shosse, Moscow, 115478

Russian Federation

Yu. Yu. Chuksina

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Yuliya Yu. Chuksina – MD, PhD, Senior Research Fellow, Department of Clinical Hematology and Immunotherapy 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

T. A. Mitina

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Tat'yana A. Mitina – MD, PhD, Senior Research Fellow, Department of Clinical Hematology and Immunotherapy 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

E. V. Trifonova

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Elena V. Trifonova – MD, PhD, Senior Research Fellow, Department of Clinical Hematology and Immunotherapy 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

L. L. Vysotskaya

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Lyudmila L. Vysotskaya – MD, PhD, Research Fellow, Department of Clinical Hematology and Immunotherapy 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

Yu. B. Chernykh

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Yuliya B. Chernykh – MD, PhD, Senior Research Fellow, Department of Clinical Hematology and Immunotherapy 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

E. F. Klinushkina

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Elena F. Klinushkina – Junior Research Fellow, Department of Clinical Hematology and Immunotherapy 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

K. A. Belousov

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Kirill A. Belousov – Research Fellow, Department of Clinical Hematology and Immunotherapy

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

Yu. P. Finashutina

N.N. Blokhin National Medical Research Centre of Oncology

Email: fake@neicon.ru

Yuliya P. Finashutina – Research Fellow, Laboratory of Recombinant Tumor Antigens

24 Kashirskoe shosse, Moscow, 115478

Russian Federation

A. V. Misyurin

N.N. Blokhin National Medical Research Centre of Oncology

Email: fake@neicon.ru

Andrey V. Misyurin – PhD, ScD in Biology, Head of the Laboratory of Recombinant Tumor Antigens 

24 Kashirskoe shosse, Moscow, 115478

Russian Federation

References

  1. Hallek M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratifcation, and treatment. Am J Hematol. 2017;92(9):946– 65. doi: 10.1002/ajh.24826.
  2. Fegan C, Pepper C. Apoptosis deregulation in CLL. Adv Exp Med Biol. 2013;792:151–71. doi: 10.1007/978-1-4614-8051-8_7.
  3. Podhorecka M, Macheta A, Bozko M, Bozko A, Malek NP, Bozko P. Deregulation of apoptosis – is it still an important issue in pathogenesis of chronic lymphocytic leukemia? Curr Cancer Drug Targets. 2016;16(8):652–8. doi: 10.2174/1568009616666160427103930.
  4. Billard C. Apoptosis inducers in chronic lymphocytic leukemia. Oncotarget. 2014;5(2): 309–25. doi: 10.18632/oncotarget.1480.
  5. Huang X, Shen Q, Chen S, Chen S, Yang L, Weng J, Du X, Grabarczyk P, Przybylski GK, Schmidt CA, Li Y. Gene expression profles in BCL11B-siRNA treated malignant T cells. J Hematol Oncol. 2011;4:23. doi: 10.1186/1756-8722-4-23.
  6. Baptista MJ, Muntañola A, Calpe E, Abrisqueta P, Salamero O, Fernández E, Codony C, Giné E, Kalko SG, Crespo M, Bosch F. Differential gene expression profle associated to apoptosis induced by dexamethasone in CLL cells according to IGHV/ZAP-70 status. Clin Cancer Res. 2012;18(21):5924–33. doi: 10.1158/1078-0432.CCR-11-2771.
  7. Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015;15(6):362–74. doi: 10.1038/nri3834.
  8. Барышников АЮ. Принципы и практика вакцинотерапии рака. Бюллетень Сибирского отделения Российской академии медицинских наук. 2004;24(2):59–63.
  9. Захаров СГ, Голенков АК, Мисюрин АВ, Катаева ЕВ, Рудакова АА, Барышникова МА, Митина ТА, Трифонова ЕВ, Высоцкая ЛЛ, Черных ЮБ, Клинушкина ЕФ, Белоусов КА, Финашутина ЮП, Мисюрин ВА. Экспрессия основных генов внешнего пути апоптоза у больных с впервые выявленным хроническим лимфолейкозом в сравнении с клиническими данными. Российский биотерапевтический журнал. 2018;17(2):41–6. doi: 10.17650/1726-9784-2018-17-2-41-46.
  10. Rozenfeld-Granot G, Toren A, Amariglio N, Brok-Simoni F, Rechavi G. Mutation analysis of the FAS and TNFR apoptotic cascade genes in hematological malignancies. Exp Hematol. 2001;29(2):228–33. doi: 10.1016/S0301-472X(00)00623-8.
  11. Srivastava S, Tsongalis GJ, Kaur P. Role of microRNAs in regulation of the TNF/TNFR gene superfamily in chronic lymphocytic leukemia. Clin Biochem. 2016;49(16–17):1307–10. doi: 10.1016/j.clinbiochem.2016.08.010.
  12. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3(9):745–56. doi: 10.1038/nri1184.
  13. Borghi A, Verstrepen L, Beyaert R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol. 2016;116:1–10. doi: 10.1016/j.bcp.2016.03.009.
  14. Secchiero P, di Iasio MG, Gonelli A, Barbarotto E, Melloni E, Tiribelli M, Chiaruttini C, Zauli G. Differential gene expression induction by TRAIL in B chronic lymphocytic leukemia (B-CLL) cells showing high versus low levels of Zap-70. J Cell Physiol. 2007;213(1):229–36. doi: 10.1002/jcp.21116.
  15. Allen JE, El-Deiry WS. Regulation of the human TRAIL gene. Cancer Biol Ther. 2012;13(12): 1143–51. doi: 10.4161/cbt.21354.
  16. Gasparini C, Celeghini C, Monasta L, Zauli G. NF-κB pathways in hematological malignancies. Cell Mol Life Sci. 2014;71(11):2083–102. doi: 10.1007/s00018-013-1545-4.
  17. Meylan F, Richard AC, Siegel RM. TL1A and DR3, a TNF family ligand-receptor pair that promotes lymphocyte costimulation, mucosal hyperplasia, and autoimmune inflammation. Immunol Rev. 2011;244(1):188–96. doi: 10.1111/j.1600-065X.2011.01068.x.
  18. Cavallini C, Lovato O, Bertolaso A, Zoratti E, Malpeli G, Mimiola E, Tinelli M, Aprili F, Tecchio C, Perbellini O, Scarpa A, Zamò A, Cassatella MA, Pizzolo G, Scupoli MT. Expression and function of the TL1A/DR3 axis in chronic lymphocytic leukemia. Oncotarget. 2015;6(31): 32061–74. doi: 10.18632/oncotarget.5201.
  19. Jablonska E, Kiersnowska-Rogowska B, Rogowski F, Parfenczyk A, Puzewska W, Bukin M. TNF family molecules in the serum of patients with B-cell chronic lymphocytic leukemia (B-CLL). Leuk Lymphoma. 2005;46(9):1307–12. doi: 10.1080/10428190500158789.
  20. Bittner S, Knoll G, Füllsack S, Kurz M, Wajant H, Ehrenschwender M. Soluble TL1A is sufcient for activation of death receptor 3. FEBS J. 2016;283(2):323–36. doi: 10.1111/febs.13576.
  21. McCarthy BA, Yancopoulos S, Tipping M, Yan XJ, Wang XP, Bennett F, Li W, Lesser M, Paul S, Boyle E, Moreno C, Catera R, Messmer BT, Cutrona G, Ferrarini M, Kolitz JE, Allen SL, Rai KR, Rawstron AC, Chiorazzi N. A seven-gene expression panel distinguishing clonal expansions of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes. Immunol Res. 2015;63(1– 3):90–100. doi: 10.1007/s12026-015-8688-3.
  22. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, Hillmen P, Keating MJ, Montserrat E, Rai KR, Kipps TJ; International Workshop on Chronic Lymphocytic Leukemia. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12): 5446–56. doi: 10.1182/blood-2007-06-093906.
  23. Зуева ЕЕ, Куртова АВ, Русанова ЕБ, Слободнюк КЮ, Горчакова МВ, Голубева ВИ, Салогуб ГН. Диагностика онкогематологических заболеваний с помощью проточной цитометрии. СПб.: СпецЛит; 2017. 327 с.
  24. Орлов АИ. Непараметрические критерии согласия Колмогорова, Смирнова, омега-квадрат и ошибки при их применении [Интернет]. Научный журнал КубГАУ. 2014;97(03):31–45. Доступно на: http://ej.kubagro.ru/2014/03/pdf/47.pdf.
  25. Wan Z, Pan H, Liu S, Zhu J, Qi W, Fu K, Zhao T, Liang J. Downregulation of SNAIL sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis by regulating the NF-κB pathway. Oncol Rep. 2015;33(3):1560–6. doi: 10.3892/or.2015.3743.
  26. ten Hacken E, Burger JA. Molecular pathways: targeting the microenvironment in chronic lymphocytic leukemia – focus on the B-cell receptor. Clin Cancer Res. 2014;20(3):548–56. doi: 10.1158/1078-0432.CCR-13-0226.
  27. Besbes S, Mirshahi M, Pocard M, Billard C. Strategies targeting apoptosis proteins to improve therapy of chronic lymphocytic leukemia. Blood Rev. 2015;29(5):345–50. doi: 10.1016/j.blre.2015.03.005

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Zakharov S.G., Golenkov A.K., Misyurin V.A., Kataeva E.V., Baryshnikova M.A., Chuksina Y.Y., Mitina T.A., Trifonova E.V., Vysotskaya L.L., Chernykh Y.B., Klinushkina E.F., Belousov K.A., Finashutina Y.P., Misyurin A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies