Preview

Альманах клинической медицины

Расширенный поиск

Диалог с клеткой: диагностическая real-time технология на основе лазерной интерферометрии

https://doi.org/10.18786/2072-0505-2018-46-8-748-757

Полный текст:

Аннотация

В статье дан обзор современных методов интерференционной микроскопии живых функционирующих клеток, позволяющих на макромолекулярном уровне исследовать динамику субклеточных микроструктур в режиме реального времени с формированием двумерных и трехмерных реконструкций изображения и проведением многопараметрового анализа данных. Показана возможность получения новой диагностической информации в рамках научной методологии так называемого интерактивного диалога с клеткой с целью выявления изменений морфофункционального состояния живых клеток при регистрации их отклика на изменение внешних условий в реальном времени. Описаны физические основы лазерной интерферометрии, проблемы и особенности интерпретации фазовых изображений клеток. В качестве иллюстрации практического использования технологии в условиях клиники представлены собственные результаты исследования морфофункционального состояния тромбоцитов периферической крови у пациентов со злокачественными опухолями ротовой полости и разными стадиями опухолевого процесса. Анализ циркулирующей популяции тромбоцитов с использованием технологии лазерной интерферометрии реального времени позволил выявить наличие компенсированной активации тромбоцитарного звена гемостаза у обследованных больных, зависимость между тяжестью онкологического заболевания и изменением размерных параметров клеток (увеличение средних значений диаметра и площади циркулирующих тромбоцитов на 23,4, 26,8 и 30,3%, и на 30,2, 32,5 и 38,1% у пациентов со II, III и IV стадиями злокачественных опухолей ротовой полости соответственно; p < 0,05 для всех сравнений). Отмечено, что условием масштабирования новых диагностических технологий служит проведение критической оценки эффективности их практической реализации, выявление преимуществ, недостатков и различий между существующими и предлагаемыми диагностическими платформами.

Об авторах

И. А. Василенко
ФГБОУ ВО «Российский государственный университет им. А.Н. Косыгина (Технологии. Дизайн. Искусство)»; ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»
Россия

Василенко Ирина Анатольевна – доктор медицинских наук, профессор, профессор кафедры прикладной математики и программирования ФГБОУ ВО «Российский государственный университет им. А.Н. Косыгина (Технологии. Дизайн. Искусство)»; заведующая научно-исследовательской лабораторией ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»

117997, г. Москва, ул. Садовническая, 33–1, 129110, г. Москва, ул. Щепкина, 61/2



В. Б. Метелин
ФГБОУ ВО «Российский государственный университет им. А.Н. Косыгина (Технологии. Дизайн. Искусство)»; ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»
Россия

Метелин Владислав Борисович – кандидат биологических наук, доцент кафедры клинической психологии ФГБОУ ВО «Российский государственный университет им. А.Н. Косыгина (Технологии. Дизайн. Искусство)»; ведущий научный сотрудник научно-исследовательской лаборатории ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»

117997, г. Москва, ул. Садовническая, 33–1, 129110, г. Москва, ул. Щепкина, 61/2



П. С. Игнатьев
АО «Производственное объединение «Уральский оптико-механический завод им. Э.С. Яламова»
Россия

Игнатьев Павел Сергеевич – кандидат физико-математических наук, главный конструктор 

620100, г. Екатеринбург, ул. Восточная, 33Б



З. З. Кардашова
ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»
Россия

Кардашова Зивер Заиддин кызы – кандидат медицинских наук, старший научный сотрудник научно-исследовательской лаборатории 

129110, г. Москва, ул. Щепкина, 61/2



Р. А. Лифенко
ГБУЗ СК «Минераловодская районная больница»
Россия

Лифенко Роман Александрович – кандидат медицинских наук, главный врач 

357202, г. Минеральные Воды, ул. Гагарина, 67А



Список литературы

1. Шляхто ЕВ, Конради АО, Галагудза ММ. Трансляционная медицина: вчера, сегодня, завтра. Вестник Росздравнадзора. 2016;(1):47–51.

2. Waf A, Mirnezami R. Translational-omics: Future potential and current challenges in precision medicine. Methods. 2018;151:3–11. doi: 10.1016/j.ymeth.2018.05.009.

3. Park Y, Choi W, Yaqoob Z, Dasari R, Badizadegan K, Feld MS. Speckle-feld digital holographic microscopy. Opt Express. 2009;17(15): 12285–92. doi: 10.1364/OE.17.012285.

4. Черная ВВ, Боровицкий ВН. Сравнительный анализ современных голографических и интерференционных микроскопов. Вимірювальна та обчислювальна техніка в технологічних процесах. 2010;(2):36–43.

5. Вишняков ГН, Левин ГГ, Минаев ВЛ, Цельмина ИЮ. Интерференционная микроскопия субнанометрового разрешения по глубине. Экспериментальные исследования. Оптика и спектроскопия. 2014;116(1):170–5. doi: 10.7868/S003040341401022X.

6. Тычинский ВП. Когерентная фазовая микроскопия внутриклеточных процессов. Успехи физических наук. 2001;171(6):649–62. doi: 10.3367/UFNr.0171.200106e.0649.

7. Garini Y, Vermolen BJ, Young IT. From micro to nano: recent advances in high-resolution microscopy. Curr Opin Biotechnol. 2005;16(1): 3–12. doi: 10.1016/j.copbio.2005.01.003.

8. Shaked NT, Zhu Y, Rinehart MT, Wax A. Twostep-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells. Opt Express. 2009;17(18):15585– 91. doi: 10.1364/OE.17.015585.

9. Tychinsky VP, Tikhonov AN. Interference microscopy in cell biophysics. 1. Principles and methodological aspects of coherent phase microscopy. Cell Biochem Biophys. 2010;58(3): 107–16. doi: 10.1007/s12013-010-9114-z.

10. Anna T, Srivastava V, Mehta DS, Shakher C. High-resolution full-feld optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells. Appl Opt. 2011;50(34):6343–51. doi: 10.1364/AO.50.006343.

11. Swedlow JR. Innovation in biological microscopy: current status and future directions. Bioessays. 2012;34(5):333–40. doi: 10.1002/bies.201100168.

12. Тычинский ВП. Динамическая фазовая микроскопия: возможен ли «диалог» с клеткой? Успехи физических наук. 2007;177(5):535–52. doi: 10.3367/UFNr.0177.200705c.0535.

13. Казакова ТА, Новиков СМ, Левин ГГ, Максимов ГВ. Исследование состояния цитоплазмы нейрона методом динамической фазовой микроскопии. Вестник Московского университета. Серия 16. Биология. 2014;(4): 25–31.

14. Вышенская ТВ, Болотова АА, Василенко ИА, Звержховский ВД, Болдырев ДВ, Кретушев АВ, Евдокимов АА. Метод определения цитотоксического потенциала по фазовым изображениям CD8+ лимфоцитов. Биофизика. 2016;61(3):523–7.

15. Jiang W, Yin Z. Seeing the invisible in differential interference contrast microscopy images. Med Image Anal. 2016;34:65–81. doi: 10.1016/j.media.2016.04.010.

16. Cherkezyan L, Zhang D, Subramanian H, Capoglu I, Taflove A, Backman V. Review of interferometric spectroscopy of scattered light for the quantifcation of subdiffractional structure of biomaterials. J Biomed Opt. 2017;22(3):30901. doi: 10.1117/1.JBO.22.3.030901.

17. Власова ЕА, Василенко ИА, Суслов ВП, Пашкин ИН. Динамика морфометрических показателей тромбоцитов периферической крови как критерий оценки тромбогенности диализных мембран. Урология. 2011;(2): 36–41.

18. Лысенко МА, Метелин ВБ, Баранова НВ. Опыт применения инновационных клеточных технологий в диагностике эндометриоидных кист яичников. Медицинский вестник Северного Кавказа. 2012;2(26):33–6.

19. Золотовская ИА, Давыдкин ИЛ, Лимарева ЛВ, Сустретов АС. Взаимосвязь эндотелиальной дисфункции и параметров оксигенации мембран эритроцитов у пациентов с фибрилляцией предсердий, перенесших кардиоэмболический инсульт. Успехи геронтологии. 2018;31(3):379–86.

20. Gjörloff-Wingren A. Quantitative phase-contrast imaging-A potential tool for future cancer diagnostics. Cytometry A. 2017;91(8):752–3. doi: 10.1002/cyto.a.23104.

21. Bettenworth D, Bokemeyer A, Poremba C, Ding NS, Ketelhut S, Lenz P, Kemper B. Quantitative phase microscopy for evaluation of intestinal inflammation and wound healing utilizing label-free biophysical markers. Histol Histopathol. 2018;33(5):417–32. doi: 10.14670/HH-11-937.

22. Левин ГГ, Золотаревский СЮ. Количественная фазовая микроскопия на основе принципов интерференционной рефрактометрии. Метрология. 2008;(3):15–21.

23. Игнатьев ПС, Индукаев КВ, Лопарев АВ, Осипов ПА. Исследование оптических свойств наноструктур методом модуляционной интерференционной микроскопии. Оптический журнал. 2011;78(1):26–31.

24. Булыгин ФВ, Золотаревский СЮ, Кононогов СА, Илюшин ЯА, Левин ГГ, Лясковский Л. Анализ методов сверхразрешения в оптической интерференционной микроскопии. Метрология. 2013;(8):22–30.

25. Болотова АА, Звержховский ВД, Вышенская ТВ, Кретушев АВ, Евдокимов АА. Информативность фазовых изображений биологических клеток. В: Булатов МФ, ред. Информатика и технологии. Инновационные технологии в промышленности и информатике («МНТК ФТИ-2017»). Сборник научных трудов. Вып. 23. М.: МИРЭА; 2017. c. 616–9.

26. Kvilekval K, Fedorov D, Obara B, Singh A, Manjunath BS. Bisque: a platform for bioimage analysis and management. Bioinformatics. 2010;26(4):544–52. doi: 10.1093/bioinformatics/btp699.

27. Hiner MC, Rueden CT, Eliceiri KW. SCIFIO: an extensible framework to support scientifc image formats. BMC Bioinformatics. 2016;17(1): 521. doi: 10.1186/s12859-016-1383-0.

28. Contursi A, Grande R, Dovizio M, Bruno A, Fullone R, Patrignani P. Platelets in cancer development and diagnosis. Biochem Soc Trans. 2018;46(6):1517–27. doi: 10.1042/BST20180159.

29. Василенко ИА, Гаспарян СА, Антонова ИШ, Савушкин АВ, Бабакова СВ. Динамика показателей тромбоцитарного звена гемостаза при физиологическом течении беременности. Вопросы гинекологии, акушерства и перинатологии. 2006;5(4):5–12.

30. Heemskerk JW, Mattheij NJ, Cosemans JM. Platelet-based coagulation: different populations, different functions. J Thromb Haemost. 2013;11(1):2–16. doi: 10.1111/jth.12045.

31. Osman A, Hitzler WE, Provost P. The platelets' perspective to pathogen reduction technologies. Platelets. 2018;29(2):140–7. doi: 10.1080/09537104.2017.1293806.

32. Olsson AK, Cedervall J. The pro-inflammatory role of platelets in cancer. Platelets. 2018;29(6): 569–73. doi: 10.1080/09537104.2018.1453059.

33. Сомонова ОВ, Маджуга АВ, Елизарова АЛ. Тромбозы и тромбоэмболии в онкологии. Современный взгляд на проблему. Злокачественные опухоли. 2014;(3):172–6. doi: 10.18027/2224-5057-2014-3-172-176.


Дополнительные файлы

1. Fig. 1. Optical scheme of the laser interference microscope based on the Linnik interferometer
Тема
Тип Исследовательские инструменты
Посмотреть (126KB)    
Метаданные
2. Fig. 2. Phase pseudo-color picture of the cell model demonstrating the possibilities of the extra-resolution of coherent phase microscopy in the nanometer range
Тема
Тип Исследовательские инструменты
Посмотреть (220KB)    
Метаданные
3. Fig. 3. Morphological types of living peripheral blood platelets identified by laser interferometry
Тема
Тип Исследовательские инструменты
Метаданные
4. Platelet hemostasis in healthy volunteers and patients with oral malignancies
Тема
Тип Исследовательские инструменты
Посмотреть (73KB)    
Метаданные

Для цитирования:


Василенко И.А., Метелин В.Б., Игнатьев П.С., Кардашова З.З., Лифенко Р.А. Диалог с клеткой: диагностическая real-time технология на основе лазерной интерферометрии. Альманах клинической медицины. 2018;46(8):748-757. https://doi.org/10.18786/2072-0505-2018-46-8-748-757

For citation:


Vasilenko I.A., Metelin V.B., Ignat'ev P.S., Kardashova Z.Z., Lifenko R.A. A dialogue with the cell: diagnostic real-time technology based on laser interferometry. Almanac of Clinical Medicine. 2018;46(8):748-757. (In Russ.) https://doi.org/10.18786/2072-0505-2018-46-8-748-757

Просмотров: 89


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-0505 (Print)
ISSN 2587-9294 (Online)